Skip to main content
Log in

Crude Oil Biodegradation by Newly Isolated Bacterial Strains and Their Consortium Under Soil Microcosm Experiment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bioremediation has been attracting researchers’ attention to develop as a technique to remove the pollution of crude oil in the environment. However, more or stronger novel strains capable of crude oil removal are still required. In this study, the potential of five newly isolated bacterial strains for crude oil abatement was evaluated in the liquid medium and contaminated soil individually and as a mixed consortium. Raoultella ornithinolytica strain PS exhibited the highest ability and degraded up to 83.5% of crude oil. Whereas Bacillus subtilis strain BJ11 degraded 81.1%, Acinetobacter lwoffii strain BJ10 degraded 75.8%, Acinetobacter pittii strain BJ6 degraded 74.9%, and Serratia marcescens strain PL degraded only 70.0% of crude oil in the liquid media. The consortium comprising the above five strains degraded more than 94.0% of crude oil after 10 days of incubation in the liquid medium. The consortium degraded more than 65.0% of crude oil after 40 days incubation even in the contaminated soil. The five crude oil degrading strains, especially their consortium, exhibited a high capability to break down a wide range of compounds in crude oil including straight-chain alkanes, branched alkanes, and aromatic hydrocarbons. These strains, especially as consortia, have good potential of application in the remediation of crude oil–contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leal, A. J., Rodrigues, E. M., Leal, P. L., Júlio, A. D. L., Fernandes, R. d. C. R., Borges, A. C., & Tótola, M. R. (2017). Changes in the microbial community during bioremediation of gasoline-contaminated soil. Brazilian Journal of Microbiology, 48(2), 342–351.

    CAS  PubMed  Google Scholar 

  2. Tyagi, M., da Fonseca, M. M., & de Carvalho, C. C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231–241.

    CAS  PubMed  Google Scholar 

  3. Suja, F., Rahim, F., Taha, M. R., Hambali, N., Razali, M. R., Khalid, A., & Hamzah, A. (2014). Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration & Biodegradation, 90, 115–122.

    CAS  Google Scholar 

  4. Santisi, S., Cappello, S., Catalfamo, M., Mancini, G., Hassanshahian, M., Genovese, L., Giuliano, L., & Yakimov, M. M. (2015). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian Journal of Microbiology, 46(2), 377–387.

    PubMed  PubMed Central  Google Scholar 

  5. Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: a review. Electronic Journal of Biotechnology, 23, 28–36.

    CAS  Google Scholar 

  6. Bento, F. M., Camargo, F. A. O., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96(9), 1049–1055.

    CAS  PubMed  Google Scholar 

  7. Wu, M., Dick, W. A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M., & Chen, L. (2016). Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. International Biodeterioration & Biodegradation, 107, 158–164.

    CAS  Google Scholar 

  8. Al-Sayegh, A., Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., & Al-Bemani, A. (2016). Bioremediation of heavy crude oil contamination. The Open Biotechnology Journal, 10(1), 301–311.

    CAS  Google Scholar 

  9. Li, X., Zhao, L., & Adam, M. (2016). Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China. Marine Pollution Bulletin, 105(1), 43–50.

    CAS  PubMed  Google Scholar 

  10. Sathishkumar, M., Binupriya, A. R., Baik, S.-H., & Yun, S.-E. (2008). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean: Soil, Air, Water, 36, 92–96.

    CAS  Google Scholar 

  11. Rahman, K. S., Thahira-Rahman, J., Lakshmanaperumalsamy, P., & Banat, I. M. (2002). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 85(3), 257–261.

    CAS  PubMed  Google Scholar 

  12. Marchand, C., St-Arnaud, M., Hogland, W., Bell, T. H., & Hijri, M. (2017). Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. International Biodeterioration & Biodegradation, 116, 48–57.

    CAS  Google Scholar 

  13. Sutton, N. B., Maphosa, F., Morillo, J. A., Abu Al-Soud, W., Langenhoff, A. A., Grotenhuis, T., Rijnaarts, H. H., & Smidt, H. (2013). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79(2), 619–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shetaia, Y. M., El Khalik, W. A., Mohamed, T. M., Farahat, L. A., & Elmekawy, A. (2016). Potential biodegradation of crude petroleum oil by newly isolated halotolerant microbial strains from polluted Red Sea area. Marine Pollution Bulletin, 111(1-2), 435–442.

    CAS  PubMed  Google Scholar 

  15. Liu, B., Ju, M., Liu, J., Wu, W., & Li, X. (2016). Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Marine Pollution Bulletin, 106(1-2), 301–307.

    CAS  PubMed  Google Scholar 

  16. Hassanshahian, M., Yakimov, M. M., Denaro, R., Genovese, M., & Cappello, S. (2014c). Using real-time PCR to assess changes in the crude oil degrading microbial community in contaminated seawater mesocosms. International Biodeterioration & Biodegradation, 93, 241–248.

    CAS  Google Scholar 

  17. Haluschak, P. (2006). Laboratory methods of soil analysis. Canada-Manitoba soil survey, 3–133.

  18. Roy, A. S., Baruah, R., Borah, M., Singh, A. K., Deka Boruah, H. P., Saikia, N., Deka, M., Dutta, N., & Chandra Bora, T. (2014). Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. International Biodeterioration & Biodegradation, 94, 79–89.

    CAS  Google Scholar 

  19. Hassanshahian, M. (2014). Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Marine Pollution Bulletin, 86(1-2), 361–366.

    CAS  PubMed  Google Scholar 

  20. Hassanshahian, M., Zeynalipour, M. S., & Musa, F. H. (2014). Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Marine Pollution Bulletin, 82(1-2), 39–44.

    CAS  PubMed  Google Scholar 

  21. Chikere, C. B., Chikere, B. O., & Okpokwasili, G. C. (2012). Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3 Biotech, 2(1), 53–66.

    PubMed  Google Scholar 

  22. Obi, L. U., Atagana, H. I., & Adeleke, R. A. (2016). Isolation and characterisation of crude oil sludge degrading bacteria. SpringerPlus, 5, 1946.

    PubMed  PubMed Central  Google Scholar 

  23. Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s manual® of systematic bacteriology (2nd ed.). New York: Springer-Verlag.

    Google Scholar 

  24. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791.

    PubMed  Google Scholar 

  26. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sezonov, G., Joseleau-Petit, D., & D'Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology, 189(23), 8746–8749.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172.

    CAS  Google Scholar 

  29. Asadirad, M. H. A., Assadi, M. M., Rashedi, H., & Nejadsattari, T. (2016). Effects of indigenous microbial consortium in crude oil degradation: a microcosm experiment. International Journal of Environmental Research, 10, 491–498.

    CAS  Google Scholar 

  30. Yan, S., Wang, Q., Qu, L., & Li, C. (2013). Characterization of oil-degrading bacteria from oil-contaminated soil and activity of their enzymes. Biotechnology & Biotechnological Equipment, 27(4), 3932–3938.

    CAS  Google Scholar 

  31. Oyetibo, G. O., Chien, M.-F., Ikeda-Ohtsubo, W., Suzuki, H., Obayori, O. S., Adebusoye, S. A., Ilori, M. O., Amund, O. O., & Endo, G. (2017). Biodegradation of crude oil and phenanthrene by heavy metal resistant Bacillus subtilis isolated from a multi-polluted industrial wastewater creek. International Biodeterioration & Biodegradation, 120, 143–151.

    CAS  Google Scholar 

  32. Sakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Bioremediation of coastal and marine pollution due to crude oil using a microorganism Bacillus subtilis. Procedia Engineering, 116, 213–220.

    Google Scholar 

  33. Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. (2017). Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Brazilian Journal of Microbiology, 48(2), 314–325.

    CAS  PubMed  Google Scholar 

  34. Morales-Guzmán, G., Ferrera-Cerrato, R., Rivera-Cruz, M. d. C., Torres-Bustillos, L. G., Arteaga-Garibay, R. I., Mendoza-López, M. R., Esquivel-Cote, R., & Alarcón, A. (2017). Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Applied Soil Ecology, 121, 127–134.

    Google Scholar 

  35. Hassanshahian, M., Emtiazi, G., & Cappello, S. (2012). Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Marine Pollution Bulletin, 64(1), 7–12.

    CAS  PubMed  Google Scholar 

  36. Hamzah, A., Rabu, A., Azmy, R. F. H. R., & Yussoff, N. A. (2010). Isolation and characterization of bacteria degrading Sumandak and south Angsi oils. Sains Malaysiana, 39, 161–168.

    CAS  Google Scholar 

  37. Yuan, X., Zhang, X., Chen, X., Kong, D., Liu, X., & Shen, S. (2018). Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresource Technology, 264, 190–197.

    CAS  PubMed  Google Scholar 

  38. Liang, J., Cheng, T., Huang, Y., & Liu, J. (2018). Petroleum degradation by Pseudomonas sp. ZS1 is impeded in the presence of antagonist Alcaligenes sp. CT10. AMB Express, 8, 88.

    PubMed  PubMed Central  Google Scholar 

  39. Zaida, N. Z., & Piakong, M. T. (2018). Effectiveness of single and microbial consortium of locally isolated beneficial microorganisms (LIBeM) in bioaugmentation of oil sludge contaminated soil at different concentration levels: a laboratory scale. Journal of Bioremediation & Biodegradation, 9, 430.

    Google Scholar 

  40. Xia, M., Fu, D., Chakraborty, R., Singh, R. P., & Terry, N. (2019). Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresource Technology, 282, 456–463.

    CAS  PubMed  Google Scholar 

  41. Patowary, K., Patowary, R., Kalita, M. C., & Deka, S. (2016). Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Frontiers in Microbiology, 7, 1092.

    PubMed  PubMed Central  Google Scholar 

  42. Zhao, D., Liu, C., Liu, L., Zhang, Y., Liu, Q., & Wu, W.-M. (2011). Selection of functional consortium for crude oil-contaminated soil remediation. International Biodeterioration & Biodegradation, 65(8), 1244–1248.

    CAS  Google Scholar 

  43. Ebadi, A., Khoshkholgh Sima, N. A., Olamaee, M., Hashemi, M., & Ghorbani Nasrabadi, R. (2017). Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. Journal of Advanced Research, 8(6), 627–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.

    PubMed  PubMed Central  Google Scholar 

  45. Peixoto, R. S., Vermelho, A. B., & Rosado, A. S. (2011). Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Research, 2011, 7.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the College of Biotechnology and Bioengineering at the Zhejiang University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Zhong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidja Abena, M.T., Sodbaatar, N., Li, T. et al. Crude Oil Biodegradation by Newly Isolated Bacterial Strains and Their Consortium Under Soil Microcosm Experiment. Appl Biochem Biotechnol 189, 1223–1244 (2019). https://doi.org/10.1007/s12010-019-03058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03058-2

Keywords

Navigation