Augmenting Fremyella diplosiphon Cellular Lipid Content and Unsaturated Fatty Acid Methyl Esters Via Sterol Desaturase Gene Overexpression

  • Somayeh Gharaie Fathabad
  • AnithaChristy S. Arumanayagam
  • Behnam Tabatabai
  • Huan Chen
  • Jie Lu
  • Viji SittherEmail author


Cyanobacteria have immense prospective as a platform for renewable energy; however, a major barrier in achieving optimal productivity is the low lipid yield. Fremyella diplosiphon, a model cyanobacterium, is an ideal biofuel agent due to its desirable fatty acid methyl esters (FAMEs). To enhance lipid content, we overexpressed the sterol desaturase (SD) gene in F. diplosiphon B481 wild type by genetic transformation. This effort resulted in a transformant (B481-SD) with a 64-fold increase in the SD gene at the mRNA transcript level, with no loss in growth and pigmentation. The transformant was persistently grown for over 32 generations indicating long-term stability and vitality. We observed 27.3% and 23% increases in total lipid content and unsaturated FAMEs respectively in B481-SD transesterified lipids with methyl octadecadienoate as the most abundant unsaturated component. In addition, we detected an 81% increase in FAME composition in the transformant compared with the wild type. Theoretical physical and chemical properties confirmed a FAME profile with very high cetane number (65.972–67.494) and oxidative stability (50.493–18.66 h) in the engineered strain. Results of the study offer a promising approach to augment F. diplosiphon total lipid content and unsaturated FAMEs, thus paving the way to enhance biofuel capacity of the organism.


Alkane Biofuel Cyanobacteria Sterol desaturase Transcript abundance 


Funding Information

The work was partially supported by the National Institutes of Health (UL1GM118973) awarded to Morgan State University and National Science Foundation (DMR 11-57490 and DMR-16-44779) awarded to the National High Magnetic Field Laboratory and the State of Florida.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3055_MOESM1_ESM.docx (96 kb)
ESM 1 (DOCX 92 kb)


  1. 1.
    Nozzi, N. E., Oliver, J. W., & Atsumi, S. (2013). Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology, 1, 7–13.CrossRefGoogle Scholar
  2. 2.
    Los, D. A., & Mironov, K. S. (2015). Modes of fatty acid desaturation in cyanobacteria: an update. Life, 5(1), 554–567.CrossRefGoogle Scholar
  3. 3.
    Murata, N., Wada, H., & Gombos, Z. (1992). Modes of fatty-acid desaturation in cyanobacteria. Plant and Cell Physiology, 33(7), 933–941.Google Scholar
  4. 4.
    Sharathchandra, K., & Rajashekhar, M. (2011). Total lipid and fatty acid composition in some freshwater cyanobacteria. Journal of Algal Biomass Utilization, 2(2), 83–97.Google Scholar
  5. 5.
    Sato, N., & Awai, K. (2016). Diversity in biosynthetic pathways of galactolipids in the light of endosymbiotic origin of chloroplasts. Frontiers in Plant Science, 7, 117–123.CrossRefGoogle Scholar
  6. 6.
    Murata, N., & Wada, H. (1995). Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochemical Journal, 308(1), 1–8.CrossRefGoogle Scholar
  7. 7.
    Kamthan, A., Kamthan, M., & Datta, A. (2017). Expression of C-5 sterol desaturase from an edible mushroom in fission yeast enhances its ethanol and thermotolerance. PLoS One, 12(3), e0173381.CrossRefGoogle Scholar
  8. 8.
    Kramm, A., Kisiela, M., Schulz, R., & Maser, E. (2012). Short-chain dehydrogenases/reductases in cyanobacteria. The Federation of European Biochemical Societies Journal, 279(6), 1030–1043.Google Scholar
  9. 9.
    Nguyen, M. A., & Hoang, A. L. (2016). A review on microalgae and cyanobacteria in biofuel production. Economies and F inances, 1–37.Google Scholar
  10. 10.
    Tabatabai, B., Chen, H., Lu, J., Giwa-Otusajo, J., McKenna, A. M., Shrivastava, A. K., & Sitther, V. (2018). Fremyella diplosiphon as a biodiesel agent: identification of fatty acid methyl esters via microwave-assisted direct in situ transesterification. Bioenergy Research, 11(3), 1–10.CrossRefGoogle Scholar
  11. 11.
    Tabatabai, B., Arumanayagam, A. S., Enitan, O., Mani, A., Natarajan, S. S., & Sitther, V. (2017). Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium. Enzyme and Microbial Technology, 103, 12–17.CrossRefGoogle Scholar
  12. 12.
    Tabatabai, B., Gharaie Fathabad, S., Bonyi, E., Rajini, S., Aslan, K., & Sitther, V. (2019). Nanoparticle-mediated impact on growth and fatty acid methyl ester composition in the cyanobacterium, Fremyella diplosiphon. Bioenergy Research In press.Google Scholar
  13. 13.
    Singh, S. P., & Montgomery, B. L. (2013). Salinity impacts photosynthetic pigmentation and cellular morphology changes by distinct mechanisms in Fremyella diplosiphon. Biochemical and Biophysical Research Communications, 433(1), 84–89.CrossRefGoogle Scholar
  14. 14.
    Kehoe, D. M., & Grossman, A. R. (1998). Use of molecular genetics to investigate complementary chromatic adaptation: advances in transformation and complementation. Methods in Enzymology, 297, 279–290.CrossRefGoogle Scholar
  15. 15.
    Kahn, K., Mazel, D., Houmard, J., De Marsac, N. T., & Schaefer, M. R. (1997). A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. Journal of Bacteriology, 179(4), 998–1006.CrossRefGoogle Scholar
  16. 16.
    De Marsac, N. T., & Houmard, J. (1988). Complementary chromatic adaptation: physiological conditions and action spectra. Methods in Enzymology, 167, 318–328.CrossRefGoogle Scholar
  17. 17.
    Whitaker, M. J., Bordowitz, J. R., & Montgomery, B. L. (2009). CpcF-dependent regulation of pigmentation and development in Fremyella diplosiphon. Biochemical and Biophysical Research Communications, 389(4), 602–606.CrossRefGoogle Scholar
  18. 18.
    Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.Google Scholar
  19. 19.
    Wahlen, B. D., Willis, R. M., & Seefeldt, L. C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102(3), 2724–2730.CrossRefGoogle Scholar
  20. 20.
    Rosenberg, J. N., Kobayashi, N., Barnes, A., Noel, E. A., Betenbaugh, M. J., & Oyler, G. A. (2014). Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One, 9(4), e92460.CrossRefGoogle Scholar
  21. 21.
    Talebi, A. F., Tabatabaei, M., & Chisti, Y. (2014). BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Research Journal, 1(2), 55–57.CrossRefGoogle Scholar
  22. 22.
    Ramos, M. J., Fernandez, C. M., Casas, A., Rodriguez, L., & Perez, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268.CrossRefGoogle Scholar
  23. 23.
    Liu, X., Sheng, J., & Curtiss, R., III. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences., 108(17), 6899–6904.CrossRefGoogle Scholar
  24. 24.
    Riss, J., Décordé, K., Sutra, T., Delage, M., Baccou, J. C., Jouy, N., Brune, J. P., Oréal, H., Cristol, J. P., & Rouanet, J. M. (2007). Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. Journal of Agricultural and Food Chemistry, 55(19), 7962–7967.CrossRefGoogle Scholar
  25. 25.
    Sevcu, A., El-Temsah, Y. S., Joner, E. J., & Cernik, M. (2009). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes and Environments, 26(4), 271–281.CrossRefGoogle Scholar
  26. 26.
    Muller, C., Binder, U., Maurer, E., Grimm, C., Giera, M., & Bracher, F. (2015). Fungal sterol C22-desaturase is not an antimycotic target as shown by selective inhibitors and testing on clinical isolates. Journal of Steroids, 101, 1–6.CrossRefGoogle Scholar
  27. 27.
    Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., Shabtai, S., & Ben-Hayyim, G. (2005). Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. The Plant Journal, 44(3), 361–371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyMorgan State UniversityBaltimoreUSA
  2. 2.Department of PathologyMethodist Hospital Research InstituteHoustonUSA
  3. 3.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  4. 4.Future Fuels InstituteFlorida State UniversityTallahasseeUSA

Personalised recommendations