Skip to main content
Log in

The Radical-Scavenging Activity of a Purified and Sequenced Peptide from Lactic Acid Fermentation of Thunnus albacares By-Products

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Yellowfin tuna by-products (Thunnus albacares) were processed to produce radical-scavenging peptides from hydrolysis by lactic acid fermentation (LAF) with Lactobacillus plantarum, papaya fruit (Carica papaya), and molasses as a carbon source for 72 h. A 15-kDa peptide was purified; after de novo sequencing, it was determined that fragments are rich in hydrophobic and neutral amino acids. The results suggest this effect is mainly to the hydrophobicity of the amino acids in their sequence. Further work is on progress to assess the ability of peptides to provide stability in lipids or in other types of samples sensitive to the action of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LAF:

Lactic acid fermentation

LA:

Lactic acid

RSA:

Radical-scavenging activity

Ab :

Absorbance of sample without protein

As :

Absorbance of sample with protein

DM:

Dark meat

V:

Viscera

HBF:

Heads, bones, and fins

TTA:

Total titrable acidity

U:

One unit of enzymatic activity

DPPH:

2,2-diphenyl-1-picrylhydrazyl

EPR:

Electron paramagnetic resonance

pI:

Isoelectric point

NCBI:

National Center for Biotechnology Information

References

  1. Chen, Y. C., & Jacek, J. (2007). Protein recovery from rainbow trout (Oncorhynchus Mykiss) processing by-products via isoelectric solubilization/precipitation and its gelation properties as affected by functional additives. Journal of Agricultural and Food Chemistry, 55(22), 9079–9088.

    CAS  PubMed  Google Scholar 

  2. Pacheco, N., Garnica-Gonzalez, M., Gimeno, M., Barzana, E., Trombotto, S., David, L., & Shirai, K. (2011). Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules, 12(9), 3285–3290.

    CAS  PubMed  Google Scholar 

  3. Zhang, X., Cheng, X., Yu, L., Yang, J., Calvo, R., Patnaik, S., & Delling, M. (2016). MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nature Communications, 7(1), 12109.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hahn, J. (2017). ROS is the boss. Free Radical Biology & Medicine, 112, 204.

    Google Scholar 

  5. Andersson, D. C., Fauconnier, J., Yamada, T., Lacampagne, A., Zhang, S. J., Katz, A., & Westerblad, H. (2011). Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes. The Journal of Physiology, 589(7), 1791–1801.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pajares, M., Cuadrado, A., Engedal, N., Jirsova, Z., & Cahova, M. (2018). The role of free radicals in autophagy regulation: implications for ageing. Oxidative Medicine and Cellular Longevity, 2018, 1–19.

    Google Scholar 

  7. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95.

    CAS  PubMed  Google Scholar 

  8. Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. Journal of Functional Foods, 21, 10–26.

    CAS  Google Scholar 

  9. USDA. (2010). Oxygen radical absorbance capacity (ORAC) of selected foods, Release 2 (2010). https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/oxygen-radical-absorbance-capacity-orac-of-selected-foods-release-2-2010/ Accessed 8 Jan 2019.

  10. Schaich, K. M., Tian, X., & Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111–125.

    CAS  Google Scholar 

  11. Karakaya, S. (2004). Bioavailability of phenolic compounds. Critical Reviews in Food Science and Nutrition, 44(6), 453–464.

    CAS  PubMed  Google Scholar 

  12. Scalbert, A., Morand, C., Manach, C., & Rémésy, C. (2002). Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy, 56(6), 276–282.

    CAS  Google Scholar 

  13. Deming, D. M., & Erdman, J. W. (1999). Mammalian carotenoid absorption and metabolism. Pure and Applied Chemistry, 71(12), 2213–2223.

    CAS  Google Scholar 

  14. Langguth, P., Bohner, V., Heizmann, J., Merkle, H. P., Wolffram, S., Amidon, G. L., & Yamashita, S. (1997). The challenge of proteolytic enzymes in intestinal peptide delivery. Journal of Controlled Release, 46(1–2), 39–57.

    CAS  Google Scholar 

  15. Zhou, B. O., Wu, L. M., Yang, L. I., & Liu, Z. L. (2005). Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radical Biology & Medicine, 38(1), 78–84.

    CAS  Google Scholar 

  16. Xiao, J., Mao, F., Yang, F., Zhao, Y., Zhang, C., & Yamamoto, K. (2011). Interaction of dietary polyphenols with bovine milk proteins: molecular structure–affinity relationship and influencing bioactivity aspects. Molecular Nutrition & Food Research, 55(11), 1637–1645.

    CAS  Google Scholar 

  17. Hazewindus, M., Haenen, G. R., Weseler, A. R., & Bast, A. (2012). The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and α-tocopherol. Food Chemistry, 132(2), 954–958.

    CAS  Google Scholar 

  18. Liu, C., Ma, X., Che, S., Wang, C., & Li, B. (2018). The effect of hydrolysis with neutrase on molecular weight, functional properties, and antioxidant activities of Alaska pollock protein isolate. Journal of Ocean University of China, 17(6), 1423–1431.

    CAS  Google Scholar 

  19. Chalamaiah, M., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry, 135(4), 3020–3038.

    CAS  PubMed  Google Scholar 

  20. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559–565.

    CAS  Google Scholar 

  21. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Samaranayaka, A. G., & Li-Chan, E. C. (2011). Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. Journal of Functional Foods, 3(4), 229–254.

    CAS  Google Scholar 

  23. Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42(5), 840–846.

    CAS  Google Scholar 

  24. Tsai, C. C., Chan, C. F., Huang, W. Y., Lin, J. S., Chan, P., Liu, H. Y., & Lin, Y. S. (2013). Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications. Molecules, 18(11), 14161–14171.

    PubMed  PubMed Central  Google Scholar 

  25. Carballo-Sánchez, M. P., Ramírez-Ramírez, J. C., Gimeno, M., Hall, G. M., Ríos-Durán, M. G., & Shirai, K. (2016). Papaya (Carica papaya) and tuna (Thunnus albacares) by-products fermentation as biomanufacturing approach towards antioxidant protein hydrolysates. Revista Mexicana de Ingenieria Quimica, 15(1), 91–100.

    Google Scholar 

  26. Kunitz, M. (1947). Crystalline soybean trypsin inhibitor: II. General properties. The Journal of General Physiology, 30(4), 291–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ospina-Salazar, G. H., Ríos-Durán, M. G., Toledo-Cuevas, E. M., & Martínez-Palacios, C. A. (2016). The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor. Animal Feed Science and Technology, 220, 168–179.

    CAS  Google Scholar 

  28. Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205.

    CAS  Google Scholar 

  29. Xie, J., & Schaich, K. M. (2014). Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. Journal of Agricultural and Food Chemistry, 62(19), 4251–4260.

    CAS  PubMed  Google Scholar 

  30. Schägger, H. (2006). Tricine–SDS-PAGE. Nature Protocols, 1(1), 16–22.

    PubMed  Google Scholar 

  31. Pasaribu, E., Nurhayati, T., & Nurilmala, M. (2018). Extraction and characterization of pepsin enzyme from tuna (Thunnus albacares) gastric. J. Pengolah. Has. Perikan. Indones., 21(3), 486–496.

    Google Scholar 

  32. Li, Z., Youravong, W., & Aran, H. (2006). Separation of proteases from yellowfin tuna spleen by ultrafiltration. Bioresource Technology, 97(18), 2364–2370.

    CAS  PubMed  Google Scholar 

  33. Skelton, G. S. (1968). Papaya proteinases. I. Temperature-and pH-stability curves. Enzymologia, 35(5), 270–274.

    CAS  PubMed  Google Scholar 

  34. Upadhyay, V. K., McSweeney, P. L. H., Magboul, A. A. A., & Fox, P. F. (2004). Proteolysis in cheese during ripening. Cheese: Chemistry, Physics and Microbiology, 1(3), 391–434.

    CAS  Google Scholar 

  35. Saha, B. C., & Hayashi, K. (2001). Debittering of protein hydrolyzates. Biotechnology Advances, 19(5), 355–370.

    CAS  PubMed  Google Scholar 

  36. Magboul, A. A., Fox, P. F., & McSweeney, P. L. (1997). Purification and characterization of a proteinase from Lactobacillus plantarum DPC2739. International Dairy Journal, 7(11), 693–700.

    CAS  Google Scholar 

  37. Gobbetti, M., Smacchi, E., Fox, P., Stepaniak, L., & Corsetti, A. (1996). The sourdough microflora. Cellular localization and characterization of proteolytic enzymes in lactic acid bacteria. LWT- Food Science and Technology, 29(5–6), 561–569.

    CAS  Google Scholar 

  38. Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949–1956.

    CAS  PubMed  Google Scholar 

  39. Menschaert, G., Vandekerckhove, T. T., Baggerman, G., Schoofs, L., Luyten, W., & Criekinge, W. V. (2010). Peptidomics coming of age: a review of contributions from a bioinformatics angle. Journal of Proteome Research, 9(5), 2051–2061.

    CAS  PubMed  Google Scholar 

  40. Allmer, J. (2011). Algorithms for the de novo sequencing of peptides from tandem mass spectra. Expert Review of Proteomics, 8(5), 645–657.

    PubMed  Google Scholar 

  41. You, L., Zhao, M., Cui, C., Zhao, H., & Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies, 10(2), 235–240.

    CAS  Google Scholar 

  42. Halim, N. R. A., Azlan, A., Yusof, H. M., & Sarbon, N. M. (2018). Antioxidant and anticancer activities of enzymatic eel (Monopterus sp) protein hydrolysate as influenced by different molecular weight. Biocatalysis and Agricultural Biotechnology, 16, 10–16.

    Google Scholar 

  43. Salem, R. B. S. B., Bkhairia, I., Abdelhedi, O., & Nasri, M. (2017). Octopus vulgaris protein hydrolysates: characterization, antioxidant and functional properties. Journal of Food Science and Technology, 54(6), 1442–1454.

    Google Scholar 

  44. Kawashima, K., Itoh, H., & Chibata, I. (1979). Antioxidant properties of branched-chain amino acid derivatives. Chemical & Pharmaceutical Bulletin, 27(8), 1912–1916.

    CAS  Google Scholar 

  45. Liao, W., Gu, L., Zheng, Y., Zhu, Z., Zhao, M., Liang, M., & Ren, J. (2016). Analysis of the quantitative structure–activity relationship of glutathione-derived peptides based on different free radical scavenging systems. Medicinal Chemistry Communications, 7(11), 2083–2093.

    CAS  Google Scholar 

Download references

Funding

This research was funded by Consejo Nacional de Ciencia y Tecnologia (CONACyT) for funding Project No. [237292] and scholarship grant (M.P.C-S.) was funded by CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco P. Carballo-Sánchez or Keiko Shirai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carballo-Sánchez, M.P., Gimeno, M., Hall, G.M. et al. The Radical-Scavenging Activity of a Purified and Sequenced Peptide from Lactic Acid Fermentation of Thunnus albacares By-Products. Appl Biochem Biotechnol 189, 1084–1095 (2019). https://doi.org/10.1007/s12010-019-03045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03045-7

Keywords

Navigation