Skip to main content
Log in

Expanding of Phospholipid:Diacylglycerol AcylTransferase (PDAT) from Saccharomyces cerevisiae as Multifunctional Biocatalyst with Broad Acyl Donor/Acceptor Selectivity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Triacylglycerols are considered one of the most promising feedstocks for biofuels. Phospholipid:diacylglycerol acyltransferase (PDAT), responsible for the last step of triacylglycerol synthesis in the acyl-CoA-independent pathway, has attracted much attention by catalyzing membrane lipid transformation. However, due to lack of biochemical and enzymatic studies, PDAT has not carried forward in biocatalyst application. Here, the PDAT from Saccharomyces cerevisiae was expressed in Pichia pastoris. The purified enzymes were studied using different acyl donors and acceptors by thin layer chromatography and gas chromatography. In addition of the preferred acyl donor of PE and PC, the results identified that ScPDAT was capable of using broad acyl donors such as PA, PS, PG, MGDG, DGDG, and acyl-CoA, and ScPDAT was more likely to use unsaturated acyl donors comparing 18:0/18:1 to 18:0/18:0 phospholipids. With regard to acyl acceptors, ScPDAT preferred 1,2 to 1,3-diacylglycerol (DAG), while 12:0/12:0 DAG was identified as the optimal acyl acceptor, followed by 18:1/18:1 and 18:1/16:0 DAG. Additionally, ScPDAT reveals esterification activity that can utilize methanol as acyl acceptor to generate fatty acid methyl esters. The results fully expand the enzymatic selectivity of ScPDAT and provide fundamental knowledge for synthesis of triacylglycerol-derived biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng, L., Shockey, J., Guo, F., Shi, L. M., Li, X. G., Shan, L., Wan, S. B., & Peng, Z. Y. (2017). Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: the peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. Journal of Plant Physiology, 219, 62–70.

    Article  CAS  PubMed  Google Scholar 

  2. Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493–1513.

    Article  CAS  Google Scholar 

  3. Peng, H., Moghaddam, L., Brinin, A., Williams, B., Mundree, S., & Haritos, V. S. (2018). Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production. Biotechnology and Applied Biochemistry, 65(2), 138–144.

    Article  CAS  PubMed  Google Scholar 

  4. Haslam, R. P., Sayanova, O., Kim, H. J., Cahoon, E. B., & Napier, J. A. (2016). Synthetic redesign of plant lipid metabolism. The Plant Journal, 87(1), 76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, X. Y., Ouyang, L. L., & Zhou, Z. G. (2016). Phospholipid: diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in myrmecia incisa during the nitrogen starvation stress. Scientific Reports, 6, 26610.

  6. Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., & Stymne, H. (2000). Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6487–6492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Erp, H., Bates, P. D., Burgal, J., Shockey, J., & Browse, J. (2011). Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiology, 155(2), 683–693.

    Article  CAS  PubMed  Google Scholar 

  8. Yoon, K., Han, D., Li, Y., Sommerfeld, M., & Hu, Q. (2011). Phospholipid:diacylglycerol acyltransferase is involved in lipid synthesis and degradation in Chlamydomonas reinhardtii. Journal of Phycology, 47, S59–S59.

    Article  CAS  Google Scholar 

  9. Yoon, K., Han, D. X., Li, Y. T., Sommerfeld, M., & Hu, Q. (2012). Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. The Plant cell., 24(9), 3708–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stahl, U., Carlsson, A. S., Lenman, M., Dahlqvist, A., Huang, B., Banas, W., Banas, A., & Stymne, S. (2004). Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiology, 135(3), 1324–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Byme, B. (2015). Pichia pastoris as an expression host for membrane protein structural biology. Current Opinion in Structural Biology, 32, 9–17.

    Article  CAS  Google Scholar 

  12. Hua, L., Gao, X., Yang, X. P., Wan, D. Y., He, C. P., Cao, J. Y., & Song, H. F. (2014). Highly efficient production of peptides: N-glycosidase F for N-glycomics analysis. Protein Expression and Purification, 97, 17–22.

    Article  CAS  PubMed  Google Scholar 

  13. Joshi, H. J., & Gupta, R. (2015). Eukaryotic glycosylation: online methods for site prediction on protein sequences. Methods in Molecular Biology, 1273, 127–137.

    Article  CAS  PubMed  Google Scholar 

  14. Ghosal, A., Banas, A., Stahl, U., Dahlqvist, A., Lindqvist, Y., & Stymne, S. (2007). Saccharomyces cerevisiae phospholipid : diacylglycerol acyl transferase (PDAT) devoid of its membrane anchor region is a soluble and active enzyme retaining its substrate specificities. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1771(12), 1457–1463.

    Article  CAS  Google Scholar 

  15. Banas, W., Sanchez Garcia, A., Banas, A., & Stymne, S. (2013). Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. Planta, 237(6), 1627–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halim, S. F. A., & Kamaruddin, A. H. (2008). Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochemistry, 43(12), 1436–1439.

    Article  CAS  Google Scholar 

  17. Rodrigues, J., Perrier, V., Lecomte, J., Dubreucq, E., & Ferreira-Dias, S. (2016). Biodiesel production from crude jatropha oil catalyzed by immobilized lipase/acyltransferase from Candida parapsilosis in aqueous medium. Bioresource Technology, 218, 1224–1229.

    Article  CAS  PubMed  Google Scholar 

  18. Duan, L. W., Zhang, H., Zhao, M. T., Sun, J. X., Chen, W. L., Lin, J. P., & Liu, X. Q. (2017). A non-canonical binding interface in the crystal structure of HIV-1 gp120 core in complex with CD4. Scientific Reports, 7(1), 46733.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, S., Cao, X. P., Wang, Y., Zhu, Z., Zhang, H. W., Xue, S., & Tian, J. (2017). A method for microalgae proteomics analysis based on modified filter-aided sample preparation. Applied Biochemistry and Biotechnology, 183(3), 923–930.

    Article  CAS  PubMed  Google Scholar 

  20. Feng, Y. B., Wang, Y. Y., Liu, J., Liu, Y. H., Cao, X. P., & Xue, S. (2017). Structural insight into acyl-ACP thioesterase toward substrate specificity design. ACS Chemical Biology, 12(11), 2830–2836.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 21576253, No. 21877110 and No. 31470432).

Author information

Authors and Affiliations

Authors

Contributions

SX designed most of the experiments, analyzed the results, and wrote the manuscript. YF conducted most of the experiments, analyzed the results, and wrote the manuscript. XC analyzed the results and provided the useful suggestions for paper. YZ, WD, and PW conducted the experiments.

Corresponding authors

Correspondence to Xupeng Cao or Song Xue.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, Y., Ding, W. et al. Expanding of Phospholipid:Diacylglycerol AcylTransferase (PDAT) from Saccharomyces cerevisiae as Multifunctional Biocatalyst with Broad Acyl Donor/Acceptor Selectivity. Appl Biochem Biotechnol 188, 824–835 (2019). https://doi.org/10.1007/s12010-019-02954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02954-x

Keywords

Navigation