Skip to main content
Log in

Withaferin A Protects Against High-Fat Diet–Induced Obesity Via Attenuation of Oxidative Stress, Inflammation, and Insulin Resistance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hafizi Abu Bakar, M., Kian Kai, C., Wan Hassan, W. N., Sarmidi, M. R., Yaakob, H., & Zaman Huri, H. (2015). Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes/Metabolism Research and Reviews, 31(5), 453–475. https://doi.org/10.1002/dmrr.2601.

    Article  CAS  PubMed  Google Scholar 

  2. Buettner, R., Parhofer, K. G., Woenckhaus, M., Wrede, C. E., Kunz-Schughart, L. A., Schölmerich, J., & Bollheimer, L. C. (2006). Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology, 36(3), 485–501. https://doi.org/10.1677/jme.1.01909.

    Article  CAS  PubMed  Google Scholar 

  3. Samuel, V. T. (2011). Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends in Endocrinology and Metabolism, 22(2), 60–65. https://doi.org/10.1016/j.tem.2010.10.003.

    Article  CAS  PubMed  Google Scholar 

  4. Fabbrini, E., Sullivan, S., & Klein, S. (2010). Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology, 51(2), 679–689. https://doi.org/10.1002/hep.23280.

    Article  CAS  PubMed  Google Scholar 

  5. Oakes, N. D., Cooney, G. J., Camilleri, S., Chisholm, D. J., & Kraegen, E. W. (1997). Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes, 46(11), 1768–1774. https://doi.org/10.2337/diab.46.11.1768.

    Article  CAS  PubMed  Google Scholar 

  6. Samuel, V., & Shulman, G. (2012). Mechanisms for insulin resistance: common threads and missing links. Cell, 148(5), 852-871. https://doi.org/10.1016/j.cell.2012.02.017.

  7. Abu Bakar, M. H., Sarmidi, M. R., Kian Kai, C., Zaman Huri, H., & Yaakob, H. (2014). Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-κB pathways. International Journal of Molecular Sciences, 15(12), 22227–22257. https://doi.org/10.3390/ijms151222227.

    Article  CAS  Google Scholar 

  8. Abu Bakar, M. H., Sarmidi, M. R., Cheng, K. K., Ali Khan, A., Chua, L. S., Zaman Huri, H., & Yaakob, H. (2015). Metabolomics—the complementary field in systems biology: a review on obesity and type 2 diabetes. Molecular BioSystems, 11(7), 1742–1774. https://doi.org/10.1039/C5MB00158G.

    Article  CAS  PubMed  Google Scholar 

  9. Kuboyama, T., Tohda, C., & Komatsu, K. (2014). Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biological and Pharmaceutical Bulletin, 37(6), 892–897. https://doi.org/10.1248/bpb.b14-00022.

    Article  CAS  PubMed  Google Scholar 

  10. Alam, N., Hossain, M., Khalil, M. I., Moniruzzaman, M., Sulaiman, S. A., & Gan, S. H. (2012). Recent advances in elucidating the biological properties of Withania somnifera and its potential role in health benefits. Phytochemistry Reviews, 11(1), 97–112.

    Article  CAS  Google Scholar 

  11. Gupta, P., Goel, R., Pathak, S., Srivastava, A., Singh, S. P., Sangwan, R. S., Asif, M. H., & Trivedi, P. K. (2013). De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the Withanolides biosynthesis. PLoS One, 8(5), e62714. https://doi.org/10.1371/journal.pone.0062714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J., Liu, J., Feng, X., Hernández, M. A. S., Mucka, P., Ibi, D., …, Ozcan, U. (2016). Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nature Medicine, 22(9), 1023–1032.

  13. Mishra, L.-C. (2000). Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Alternative Medicine Review, 5(4), 334–346.

    CAS  PubMed  Google Scholar 

  14. Yamauchi, T., Kamon, J., Waki, H., Murakami, K., Motojima, K., Komeda, K., … Tobe, K. (2001). The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. Journal of Biological Chemistry, 276(44), 41245–41254.

  15. García-Rocha, M., Roca, A., De La Iglesia, N., Baba, O., Fernández-Novell, J. M., Ferrer, J. C., & Guinovart, J. J. (2001). Intracellular distribution of glycogen synthase and glycogen in primary cultured rat hepatocytes. Biochemical Journal, 357(Pt 1), 17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Irimia, J. M., Meyer, C. M., Segvich, D. M., Surendran, S., DePaoli-Roach, A. A., Morral, N., & Roach, P. J. (2017). Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. Journal of Biological Chemistry, 292(25), 10455–10464. https://doi.org/10.1074/jbc.M117.786525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagle, C. A., Klett, E. L., & Coleman, R. A. (2009). Hepatic triacylglycerol accumulation and insulin resistance. Journal of Lipid Research, 50(Supplement), S74–S79. https://doi.org/10.1194/jlr.R800053-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gruben, N., Shiri-Sverdlov, R., Koonen, D. P. Y., & Hofker, M. H. (2014). Nonalcoholic fatty liver disease: a main driver of insulin resistance or a dangerous liaison? Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(11), 2329–2343.

    Article  CAS  Google Scholar 

  19. Patel, S. B., Rao, N. J., & Hingorani, L. L. (2016). Safety assessment of Withania somnifera extract standardized for Withaferin A: acute and sub-acute toxicity study. Journal of Ayurveda and Integrative Medicine, 7(1), 30–37. https://doi.org/10.1016/j.jaim.2015.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Milagro, F. I., Campión, J., & Martínez, J. A. (2006). Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity, 14(7), 1118–1123.

    Article  CAS  PubMed  Google Scholar 

  21. Anson, R. M., Guo, Z., de Cabo, R., Iyun, T., Rios, M., Hagepanos, A., …, Mattson, M. P. (2003). Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proceedings of the National Academy of Sciences, 100(10), 6216–6220. https://doi.org/10.1073/pnas.1035720100.

  22. Cerqueira, F. M., da Cunha, F. M., da Silva, C. C. C., Chausse, B., Romano, R. L., Garcia, C. C. M., …, Kowaltowski, A. J. (2011). Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radical Biology and Medicine, 51(7), 1454–1460.

  23. Yadav, A., Kataria, M. A., Saini, V., & Yadav, A. (2013). Role of leptin and adiponectin in insulin resistance. Clinica Chimica Acta, 417, 80–84. https://doi.org/10.1016/j.cca.2012.12.007.

    Article  CAS  Google Scholar 

  24. Combs, T. P., & Marliss, E. B. (2014). Adiponectin signaling in the liver. Reviews in Endocrine & Metabolic Disorders, 15(2), 137–147.

    Article  CAS  Google Scholar 

  25. Enriori, P. J., Evans, A. E., Sinnayah, P., & Cowley, M. A. (2006). Leptin resistance and obesity. Obesity, 14(S8), 254S–258S.

    Article  CAS  PubMed  Google Scholar 

  26. Rochette, L., Zeller, M., Cottin, Y., & Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(9), 2709–2729. https://doi.org/10.1016/j.bbagen.2014.05.017.

    Article  CAS  Google Scholar 

  27. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001.

    Article  CAS  Google Scholar 

  28. Martins, A. R., Nachbar, R. T., Gorjao, R., Vinolo, M. a, Festuccia, W. T., Lambertucci, R. H., …, Hirabara, S. M. (2012). Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids in Health and Disease, 11(30), 1–30. https://doi.org/10.1186/1476-511X-11-30.

  29. Yuzefovych, L. V., Musiyenko, S. I., Wilson, G. L., & Rachek, L. I. (2013). Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One, 8(1), e54059. Retrieved from. https://doi.org/10.1371/journal.pone.0054059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abu Bakar, M. H., Sarmidi, M. R., Tan, J. S., & Mohamad Rosdi, M. N. (2017). Celastrol attenuates mitochondrial dysfunction and inflammation in palmitate-mediated insulin resistance in C3A hepatocytes. European Journal of Pharmacology, 799, 73–83. https://doi.org/10.1016/j.ejphar.2017.01.043.

    Article  CAS  PubMed  Google Scholar 

  31. Abu Bakar, M. H., & Tan, J. S. (2017). Improvement of mitochondrial function by celastrol in palmitate-treated C2C12 myotubes via activation of PI3K-Akt signaling pathway. Biomedicine & Pharmacotherapy, 93, 903–912. https://doi.org/10.1016/j.biopha.2017.07.021.

    Article  CAS  Google Scholar 

  32. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hernández-Aguilera, A., Rull, A., Rodríguez-Gallego, E., Riera-Borrull, M., Luciano-Mateo, F., Camps, J., Menéndez, J. A., & Joven, J. (2013). Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators of Inflammation, 2013, 135698. https://doi.org/10.1155/2013/135698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai, D., Yuan, M., Frantz, D. F., Melendez, P. A., Hansen, L., Lee, J., & Shoelson, S. E. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-[beta] and NF-[kappa]B. Nature Medicine, 11(2), 183–190. https://doi.org/10.1038/nm1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shoelson, S. E., Lee, J., & Goldfine, A. B. (2006). Inflammation and insulin resistance. The Journal of Clinical Investigation, 116(7), 1793–1801. https://doi.org/10.1172/JCI29069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Visser, M., Bouter, L. M., McQuillan, G. M., Wener, M. H., & Harris, T. B. (1999). Elevated C-reactive protein levels in overweight and obese adults. Jama, 282(22), 2131–2135.

    Article  CAS  PubMed  Google Scholar 

  37. De Luca, C., & Olefsky, J. M. (2008). Inflammation and insulin resistance. FEBS Letters, 582(1), 97–105. https://doi.org/10.1016/j.febslet.2007.11.057.

    Article  CAS  PubMed  Google Scholar 

  38. Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid–induced insulin resistance. The Journal of Clinical Investigation, 116(11), 3015–3025. https://doi.org/10.1172/JCI28898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Westerbacka, J., Kolak, M., Kiviluoto, T., Arkkila, P., Sirén, J., Hamsten, A., …, Yki-Järvinen, H. (2007). Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes, 56(11), 2759–2765. https://doi.org/10.2337/db07-0156.

  40. Liaskou E, Zimmermann HW, Li KK, Oo YH, Suresh S, Stamataki Z, …, Adams DH (2012). Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology, 57(1), 385–398. https://doi.org/10.1002/hep.26016.

  41. Po-Shiuan, H., Jong-Shiaw, J., Chih-Fan, C., Pei-Chi, C., Chih-Hao, C., & Kuang-Chung, S. (2012). COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity, 17(6), 1150–1157. https://doi.org/10.1038/oby.2008.674.

    Article  CAS  Google Scholar 

  42. Evans, R. M., Barish, G. D., & Wang, Y.-X. (2004). PPARs and the complex journey to obesity. Nature Medicine, 10(4), 355–361. https://doi.org/10.1038/nm1025.

    Article  CAS  PubMed  Google Scholar 

  43. Maruyama, H., Kiyono, S., Kondo, T., Sekimoto, T., & Yokosuka, O. (2016). Palmitate-induced regulation of PPARγ via PGC1α: a mechanism for lipid accumulation in the liver in nonalcoholic fatty liver disease. International Journal of Medical Sciences, 13(3), 169–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Montagner, A., Polizzi, A., Fouché, E., Ducheix, S., Lippi, Y., Lasserre, F., Barquissau, V., Régnier, M., Lukowicz, C., Benhamed, F., Iroz, A., Bertrand-Michel, J., al Saati, T., Cano, P., Mselli-Lakhal, L., Mithieux, G., Rajas, F., Lagarrigue, S., Pineau, T., Loiseau, N., Postic, C., Langin, D., Wahli, W., & Guillou, H. (2016). Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut , 65(7), 1202–1214. https://doi.org/10.1136/gutjnl-2015-310798.

  45. Pettinelli, P., & Videla, L. A. (2011). Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. The Journal of Clinical Endocrinology & Metabolism, 96(5), 1424–1430.

    Article  CAS  Google Scholar 

  46. Edvardsson, U., Ljungberg, A., & Oscarsson, J. (2006). Insulin and oleic acid increase PPARγ2 expression in cultured mouse hepatocytes. Biochemical and Biophysical Research Communications, 340(1), 111–117.

    Article  CAS  PubMed  Google Scholar 

  47. Yeon, J. E., Choi, K. M., Baik, S. H., Kim, K. O., Lim, H. J., Park, K. H., … BAK, Y. (2004). Reduced expression of peroxisome proliferator-activated receptor-α may have an important role in the development of non-alcoholic fatty liver disease. Journal of Gastroenterology and Hepatology, 19(7), 799–804.

  48. Kohjima, M., Enjoji, M., Higuchi, N., Kato, M., Kotoh, K., Yoshimoto, T., … Harada, N. (2007). Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. International Journal of Molecular Medicine, 20(3), 351–358.

  49. Padda, R. S., Gkouvatsos, K., Guido, M., Mui, J., Vali, H., & Pantopoulos, K. (2014). A high-fat diet modulates iron metabolism but does not promote liver fibrosis in hemochromatotic Hjv−/− mice. American Journal of Physiology. Gastrointestinal and Liver Physiology, 308(4), G251–G261.

    Article  CAS  PubMed  Google Scholar 

  50. Kubo, H., Hoshi, M., Matsumoto, T., Irie, M., Oura, S., Tsutsumi, H., Hata, Y., Yamamoto, Y., & Saito, K. (2017). Sake lees extract improves hepatic lipid accumulation in high fat diet-fed mice. Lipids in Health and Disease, 16(1), 106. https://doi.org/10.1186/s12944-017-0501-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koonen, D. P. Y., Jacobs, R. L., Febbraio, M., Young, M. E., Soltys, C.-L. M., Ong, H., Vance, D. E., & Dyck, J. R. B. (2007). Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes, 56(12), 2863–2871. https://doi.org/10.2337/db07-0907.

  52. Dorn, C., Riener, M.-O., Kirovski, G., Saugspier, M., Steib, K., Weiss, T. S., …, Hellerbrand, C. (2010). Expression of fatty acid synthase in nonalcoholic fatty liver disease. International Journal of Clinical and Experimental Pathology, 3(5), 505–514.

  53. Auguet, T., Berlanga, A., Guiu-Jurado, E., Martinez, S., Porras, J. A., Aragonès, G., …, Richart, C. (2014). Altered fatty acid metabolism-related gene expression in liver from morbidly obese women with non-alcoholic fatty liver disease. International Journal of Molecular Sciences, 15(12), 22173–22187. https://doi.org/10.3390/ijms151222173.

  54. Wakil, S. J., & Abu-Elheiga, L. A. (2009). Fatty acid metabolism: target for metabolic syndrome. Journal of Lipid Research, 50(Supplement), S138–S143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rui, L. (2014). Energy metabolism in the liver. Comprehensive Physiology, 4(1), 177–197. https://doi.org/10.1002/cphy.c130024.

    Article  PubMed  PubMed Central  Google Scholar 

  56. She, P., Shiota, M., Shelton, K. D., Chalkley, R., Postic, C., & Magnuson, M. A. (2000). Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Molecular and Cellular Biology, 20(17), 6508–6517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gothai, S., Ganesan, P., Park, S.-Y., Fakurazi, S., Choi, D.-K., & Arulselvan, P. (2016). Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients, 8(8), 461. https://doi.org/10.3390/nu8080461.

    Article  CAS  PubMed Central  Google Scholar 

  58. Ríos, J. L., Francini, F., & Schinella, G. R. (2015). Natural products for the treatment of type 2 diabetes mellitus. Planta Medica, 81(12/13), 975–994.

    Article  CAS  PubMed  Google Scholar 

  59. Maier, T., Güell, M., & Serrano, L. (2009). Correlation of mRNA and protein in complex biological samples. FEBS Letters, 583(24), 3966–3973. https://doi.org/10.1016/j.febslet.2009.10.036.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was fully supported by the Universiti Sains Malaysia Short Term Grant (Reference no: 304/PTEKIND/6313329 and 304/PKIMIA/6313330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Hafizi Abu Bakar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Bakar, M.H., Azmi, M.N., Shariff, K.A. et al. Withaferin A Protects Against High-Fat Diet–Induced Obesity Via Attenuation of Oxidative Stress, Inflammation, and Insulin Resistance. Appl Biochem Biotechnol 188, 241–259 (2019). https://doi.org/10.1007/s12010-018-2920-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2920-2

Keywords

Navigation