Skip to main content

Advertisement

Log in

Bio-guided Purification and Mass Spectrometry Characterisation Exploring the Lysozyme-like Protein from Enterococcus lactis Q1, an Unusual Marine Bacterial Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria produce various antibacterial peptides such as bacteriocins that are active against pathogenic and spoilage microorganisms. Very little attention has been paid to the production of lysozyme as an antimicrobial enzyme. The present work represents one of the few studies reporting lysozyme production by enterococci. Indeed, this study was first conducted to evaluate the antimicrobial activity of Enterococcus lactis Q1, an enterocin P-producing strain previously isolated from fresh shrimp (Penaeus vannamei), against multidrug-resistant clinical isolates. Results showed significant inhibitory activity (P < 0.05) towards diverse pathogens. The purification of the antimicrobial substances produced by Q1 strain leads to the isolation of two active fractions. The SDS-PAGE and mass spectrometry analyses of fraction number 2 (fraction 2) revealed the presence of a protein with molecular mass of 14.3 kDa. Additionally, the experimental results are consistent with mass spectra of industrial lysozyme (Fluka ref. 62970). The lysozyme produced by Enterococcus lactis Q1 strain was confirmed by a plate method against Micrococcus luteus ATCC 4698. Also, sensitivity of the Q1 strain to different concentrations of lysozyme was investigated. For the first time, this study shows that E. lactis Q1 produces lysozyme which could be an excellent candidate in food biopreservation or production of functional foods to promote health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cavera, V. L., Arthur, T. D., Kashtanov, D., & Chikindas, M. L. (2015). Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents, 46(5), 494–501.

    Article  CAS  PubMed  Google Scholar 

  2. Kovalenko, N. K., & Kasumova, S. A. (1996). The lysozyme-synthesizing activity of enterococci and lactobacilli, Mikrobiolohichnyĭ Zhurnal, 58, 12–8. [In Russian, English abstract].

  3. Kovalenko, N. K., Nemirovskaia, L. N., & Kasumova, S. A. (1999). The bacteriocinogenic and lysozyme-synthesizing activity of lactobacilli. Mikrobiolohichnyĭ Zhurnal, 61, 42–50. [In Russian, English abstract].

  4. Saurabh, S., & Sahoo, P. K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39(3), 223–239.

    Article  CAS  Google Scholar 

  5. Beckert, A., Wiesner, J., Baumann, A., Pöppel, A. K., Vogel, H., & Vilcinskas, A. (2015). Two c-type lysozymes boost the innate immune system of the invasive ladybird Harmonia axyridis. Development Comparative Immunology, 49(2), 303–312.

    Article  CAS  Google Scholar 

  6. Narmadha, G., & Yenugu, S. (2016). In silico and biochemical characterization of lysozyme-like proteins in the rat. PLoS One, 11, e01619092016.

    Article  CAS  Google Scholar 

  7. Brasca, M., Morandi, S., Silvetti, T., Rosi, V., Cattaneo, S., & Pellegrino, L. (2013). Different analytical approaches in assessing antibacterial activity and the purity of commercial lysozyme preparations for dairy application. Molecules, 18(5), 6008–6020.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429.

    Article  CAS  Google Scholar 

  9. Ercan, D., & Demirci, A. (2016). Recent advances for the production and recovery methods of lysozyme. Critical Reviews in Biotechnology, 36(6), 1078–1088.

    Article  CAS  PubMed  Google Scholar 

  10. Yi, S., Dai, F., Ma, Y., Yan, T., Si, Y., & Sun, G. (2017). Ultrafine silk-derived nanofibrous membranes exhibiting effective lysozyme adsorption. ACS Sustainable Chemistry and Engineering, 5(10), 8777–8784.

    Article  CAS  Google Scholar 

  11. Nakimbugwe, D., Masschalck, B., Anim, G., & Michiels, C. W. (2006). Inactivation of Gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure. International Journal of Food Microbiology, 112(1), 19–25.

    Article  CAS  PubMed  Google Scholar 

  12. Bera, A., Herbert, S., Jakob, A., Vollmer, W., & Götz, F. (2005). Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular Microbiology, 55, 778–787.

    Article  CAS  PubMed  Google Scholar 

  13. Branen, J. K., & Davidson, P. M. (2004). Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology, 90(1), 63–74.

    Article  CAS  PubMed  Google Scholar 

  14. Jay, J. M. (1966). Production of lysozyme by staphylococci and its correlation with three other extracellular substances. Journal of Biotechnology, 91, 1804–1810.

    CAS  Google Scholar 

  15. Holt, R. J. (1971). Lysozyme production by staphylococci and micrococci. Journal of Medical Microbiology, 4(3), 375–379.

    Article  CAS  PubMed  Google Scholar 

  16. Ben Braïek, O., Ghomrassi, H., Cremonesi, P., Morandi, S., Fleury, Y., Le Chevalier, P., Hani, K., Bel Hadj, O., & Ghrairi, T. (2017). Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie Van Leeuwenhoek, 110(6), 771–786.

    Article  CAS  PubMed  Google Scholar 

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  PubMed  Google Scholar 

  18. Morandi, S., Silvetti, T., & Brasca, M. (2013). Biotechnological and safety characterization of Enterococcus lactis, a recently described species of dairy origin. Antonie Van Leeuwenhoek, 103(1), 239–249.

    Article  CAS  PubMed  Google Scholar 

  19. Silvetti, T., Brasca, M., Lodi, R., Vanoni, L., Chiolerio, F., de Groot, M., & Bravi, A. (2010). Effects of lysozyme on the microbiological stability and organoleptic properties of unpasteurized beer. Journal of the Institute of Brewing, 116(1), 33–40.

    Article  CAS  Google Scholar 

  20. van de Beek, D., de Gans, J., Tunkel, A. R., & Wijdicks, E. F. M. (2006). Community-acquired bacterial meningitis in adults. The New England Journal of Medicine, 354, 44–53.

    Article  PubMed  Google Scholar 

  21. Safaei, H. G., Moghim, S., Isfahani, B. N., Fazeli, H., Poursina, F., Yadegari, S., Nasirmoghadas, P., Abolfazl, S., & Nodoushan, H. (2017). Distribution of the strains of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa isolates from burn patients. Advanced Biomedical Research, 6(1), 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: the case of functional foods. Trends in Food Science & Technology, 31(2), 118–129.

    Article  CAS  Google Scholar 

  23. Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018). Benefaction of probiotics for human health: a review. Journal of Food and Drug Analysis, 26(3), 927–939. https://doi.org/10.1016/j.jfda.2018.01.002.

    Article  CAS  Google Scholar 

  24. Zhang, X., Wang, Y., Sun, M., Ren, X., Zou, Y., Wang, Q., & Wang, W. (2008). Purification and properties of lysozyme from a marine strain. Annals of Microbiology, 58(1), 89–94.

    Article  CAS  Google Scholar 

  25. Yan, L., Shen, S., Yun, J., & Yao, K. (2011). Isolation of lysozyme from chicken egg white using polacrylamide-based cation-exchange cryogel. Chinese Journal of Chemical Engineering, 19(5), 876–880.

    Article  CAS  Google Scholar 

  26. Derde, M., Guérin-Dubiard, C., Lechevalier, V., Cochet, M. F., Jan, S., Baron, F., Gautier, M., Vié, V., & Nau, F. (2014). Dry-heating of lysozyme increases its activity against Escherichia coli membranes. Journal of Agricultural and Food Chemistry, 62(7), 1692–1700.

    Article  CAS  PubMed  Google Scholar 

  27. Hukić, M., Seljmo, D., Ramovic, A., Ibrišimović, M. A., Dogan, S., Hukic, J., & Feric Bojic, E. (2017). The effect of lysozyme on reducing biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: an in vitro examination. Microbial Drug Resistance. https://doi.org/10.1089/mdr.2013.0303.

  28. Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E., & Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63, 4321–4330.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Ministry of High Education, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Ben Braïek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

● Antimicrobial activity of Enterococcus lactis strain Q1 against multidrug bacteria

● Purification of E. lactis strain Q1 using two-step procedure

● Detection of significant production of lysozyme by E. lactis Q1

● This work is the first report on lysozyme production and purification in E. lactis

E. lactis Q1 is a good candidate in food biopreservation or in antibiotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Braïek, O., Smaoui, S., Fleury, Y. et al. Bio-guided Purification and Mass Spectrometry Characterisation Exploring the Lysozyme-like Protein from Enterococcus lactis Q1, an Unusual Marine Bacterial Strain. Appl Biochem Biotechnol 188, 43–53 (2019). https://doi.org/10.1007/s12010-018-2886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2886-0

Keywords

Navigation