Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1371–1383 | Cite as

Stimulation of Wood Degradation by Daedaleopsis confragosa and D. tricolor

  • Jasmina ĆilerdžićEmail author
  • Milica Galić
  • Žarko Ivanović
  • Ilija Brčeski
  • Jelena Vukojević
  • Mirjana Stajić


Biological pretreatment of the lignocellulosic residues, in which white-rot fungi have a crucial role, has many advantages compared to the chemical, physical, and physico-chemical methods of delignification and therefore attracts increasing scientific attention. Regarding the fact that properties and capacities of the ligninolytic enzymes of Daedaleopsis spp. are still unknown, the aim of this study was to research how nitrogen sources and inducers affect the potential of Daedaleopsis confragosa and Daedaleopsis tricolor to degrade cherry sawdust. NH4NO3, (NH4)2SO4, and peptone were tested as nitrogen sources, while veratryl alcohol, p-anisidine, vanillic acid, and phenylmethylsulfonyl fluoride were the studied inducers. As Mn-dependent peroxidase and laccase were the leader enzymes and cherry sawdust/peptone medium the best stimulator of their activities, the effect of inducers on delignification potential of these species was studied during fermentation of that substrate. Veratryl alcohol was the best stimulator of laccase and phenylmethylsulfonyl fluoride of Mn-dependent peroxidase activity (27,610.0 and 1338.4 U/L, respectively). These inducers also increased cherry sawdust delignification selectivity, particularly in D. tricolor in the presence of phenylmethylsulfonyl fluoride (lignin:hemicellulose:cellulose = 32.1%:0.9%:11.7%). Owing to the presented results, studied species could have an important role in the phase of lignocellulose pretreatment in various biotechnological processes.


Cherry sawdust Daedaleopsis spp. Delignification Laccases Mn-oxidizing peroxidases 



This study was carried out under Project No. 173032, which is financially supported by the Ministry of Education, Science and Technological Development of Republic of Serbia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alavanja, M. C. R. (2009). Reviews on Environmental Health, 24, 303–309.Google Scholar
  2. 2.
    Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550–567.Google Scholar
  3. 3.
    Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68.Google Scholar
  4. 4.
    Stajić, M., Vukojević, J., Milovanović, I., Ćilerdžić, J., & Knežević, A. (2016). In V. K. Gupta (Ed.), Microbial enzymes in bioconversion of biomass (pp. 251–269). Switzerland: Springer International Publishing.Google Scholar
  5. 5.
    Galhaup, C., & Haltrich, D. (2001). Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Applied Microbiology and Biotechnology, 56(1-2), 225–232.Google Scholar
  6. 6.
    Silva, C. M. M. S., Soares de Melo, I., & Roberto de Oliveira, P. (2005). Enzyme and Microbial Technology, 37, 324–329.Google Scholar
  7. 7.
    Hakala, T. K., Hildén, K., Maijala, P., Olsson, C., & Hatakka, A. (2006). Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Applied Microbiology and Biotechnology, 73(4), 839–849.Google Scholar
  8. 8.
    Stajić, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S. P., Nevo, E., & Vukojević, J. (2006). Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme and Microbial Technology, 38(1-2), 65–73.Google Scholar
  9. 9.
    Malarczyk, E., Rdest, J. K., & Wilkolazka, A. J. (2009). Influence of very low doses of mediators on fungal laccase activity - nonlinearity beyond imagination. Nonlinear Biomedical Physics, 3(1), 10.Google Scholar
  10. 10.
    Patrick, F., Mtui, G., Manoni, A., & Kivaisi, M. A. (2011). African Journal of Biotechnology, 10, 10166–10177.Google Scholar
  11. 11.
    Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30(6), 1447–1457.Google Scholar
  12. 12.
    Kaal, J. E. E., Field, A. J., & Joyce, W. T. (1995). Increasing ligninolytic enzyme activities in several white-rot Basidiomycetes by nitrogen-sufficient media. Bioresource Technology, 53(2), 133–139.Google Scholar
  13. 13.
    Dong, J. L., Zhang, Y. W., Zhang, R. H., Huang, W. Z., & Zhang, Y. Z. (2005). Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungusTrametes gallica. Journal of Basic Microbiology, 45(3), 190–198.Google Scholar
  14. 14.
    Mikiashvili, N., Wasser, S. P., Nevo, E., & Elisashvili, V. (2006). World Journal of Microbiology and Biotechnology, 22(9), 999–1002.Google Scholar
  15. 15.
    Levin, L., Melignani, E., & Ramos, A. M. (2010). Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresource Technology, 101(12), 4554–4563.Google Scholar
  16. 16.
    Hammel, E. K. (1997). In G. Cadisch & K. E. Giller (Eds.), Driven by nature: plant litter quality and decomposition (pp. 33–45). United Kingdom: CAB INTERNATIONAL.Google Scholar
  17. 17.
    Master, T., & Field, A. T. (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. The Journal of Biological Chemistry, 273(25), 15412–15417.Google Scholar
  18. 18.
    Sethuraman, A., Akin, D. E., & Eriksson, K. E. L. (1999). Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus. Applied Microbiology and Biotechnology, 52(5), 689–697.Google Scholar
  19. 19.
    Songulashvili, G., Elisashvili, V., Wasser, S. P., Nevo, E., & Hadar, Y. (2006). Laccase and manganese peroxidase activities of Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation. Biotechnology Letters, 28(18), 1425–1429.Google Scholar
  20. 20.
    D’Souza, T. M., Boominathan, K., & Reddy, C. A. (1996). Appl Environmental Microbiology, 62, 3739–3744.Google Scholar
  21. 21.
    D’Souza, T. M., Merritt, C. S., & Reddy, C. A. (1999). Appl Environmental Microbiology, 65, 5307–5313.Google Scholar
  22. 22.
    Tekere, M., Zvauya, R., & Read, J. S. (2001). Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. Journal of Basic Microbiology, 41(2), 115–129.Google Scholar
  23. 23.
    Li, P., Wang, H., Liu, G., Li, X., & Yao, J. (2011). Enzyme and Microbial Technology, 48, 1–6.Google Scholar
  24. 24.
    Blanchette, R. A., Krueger, E. W., Haight, J. E., Akhtar, M., & Akin, D. E. (1997). Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. Journal of Biotechnology, 53(2-3), 203–213.Google Scholar
  25. 25.
    Goodell, B., Jellison, J., Liu, J., Daniel, G., Paszczynski, A., Fekete, F., Krishnamurthy, S., Jun, L., & Xu, G. (1997). Journal of Biotechnology 53, 133–162, Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood1Google Scholar
  26. 26.
    Elisashvili, V., & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. Journal of Biotechnology, 144(1), 37–42.Google Scholar
  27. 27.
    Knežević, A., Stajić, M., Jovanović, V., Ćilerdžić, J., Milovanović, I., & Vukojević, J. (2016). Induction of wheat straw delignification by Trametes species. Scientific Reports, 6(1), 26529.Google Scholar
  28. 28.
    Stelzer, R. S., Heffernan, J., & Likens, G. E. (2003). The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream. Freshwater Biology, 48(11), 1925–1937.Google Scholar
  29. 29.
    Bilandzija, N., Voca, N., Kricka, T., Matin, A., & Jurisic, V. (2012). Spanish Journal of Agricultural Research, 10, 292–298.Google Scholar
  30. 30.
    Jasinskas, A., Kocinskas, V., Jotautiene, E., & Ziemelis, I. (2017). Proceedings of 16th International scientific conference - engineering for rural development, Latvia, pp. 641–646.Google Scholar
  31. 31.
    Rösecke, J., & König, W. A. (2000). Constituents of the fungi Daedalea quercina and Daedaleopsis confragosa var. tricolor. Phytochemistry, 54(8), 757–762.Google Scholar
  32. 32.
    Bernicchia, A., Fugazzola, M. A., Gemelli, V., Mantovani, B., Lucchetti, A., Cesari, M., & Speroni, E. (2006). DNA recovered and sequenced from an almost 7000 y-old Neolithic polypore, Daedaleopsis tricolor. Mycological Research, 110(1), 14–17.Google Scholar
  33. 33.
    White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). San Diego: Academic Press.Google Scholar
  34. 34.
    Stajić, M., Kukavica, B., Vukojević, J., Simonić, J., Veljović-Jovanović, S., & Duletić-Laušević, S. (2010). Bioresources, 5, 2362–2373.Google Scholar
  35. 35.
    Stajić, M., Ćilerdžić, J., Galić, M., Ivanović, Ž., & Vukojević, J. (2017). Bioresources, 12, 7195–7204.Google Scholar
  36. 36.
    Ćilerdžić, J., Stajić, M., & Vukojević, J. (2016). Degradation of wheat straw and oak sawdust by Ganoderma applanatum. International Biodeterioration & Biodegradation, 114, 39–44.Google Scholar
  37. 37.
    Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Journal of Dairy Science 74, 3583–3597,Google Scholar
  38. 38.
    Kirk, T. K., & Obst, J. R. (1988). In S. P. Colowick & N. O. Kaplan (Eds.), In methods in enzymology 161 (pp. 87–101). San Diego: Academic Press Inc.Google Scholar
  39. 39.
    Songulashvili, G., Elisashvili, V., Wasser, S. P., Nevo, E., & Hadar, Y. (2007). Enzyme and Microbial Technology, 41, 57–61.Google Scholar
  40. 40.
    Li, P., Wang, H., Liu, G., Li, X., & Yao, J. (2011). Enzyme and Microbial Technology, 48, 1–6.Google Scholar
  41. 41.
    Xavier, R. B., Maria, A., Tavares Mora, A. P., Ferreira, R., & Amado, F. (2007). Electronic Journal of Biotechnology, 10, 444–451.Google Scholar
  42. 42.
    Galhaup, C., Wagner, H., Hinterstoisser, B., & Haltrich, D. (2002). Enzyme and Microbial Technology, 30, 529–536.Google Scholar
  43. 43.
    Bakkiyaraj, S., Aravindan, R., Arrivukkarasan, S., & Viruthagiri, T. (2013). International Journal of ChemTech Research, 5, 1224–1238.Google Scholar
  44. 44.
    Kapich, A. N., Prior, B. A., Botha, A., Galkin, S., Lundell, T., & Hatakka, A. (2004). Enzyme and Microbial Technology, 34, 187–195.Google Scholar
  45. 45.
    Fukasawa, Y., Osono, T., & Takeda, H. (2005). Decomposition of Japanese beech wood by diverse fungi isolated from a cool temperate deciduous forest. Mycoscience, 46(2), 97–101.Google Scholar
  46. 46.
    Knežević, A., Milovanović, I., Stajić, M., Lončar, N., Brčeski, I., Vukojević, J., & Ćilerdžić, J. (2013). Lignin degradation by selected fungal species. Bioresource Technology, 138, 117–123.Google Scholar
  47. 47.
    Valmaseda, M., Martínez, M. J., & Martínez, A. T. (1991). Applied Microbiology and Biotechnology, 35, 817–823.Google Scholar
  48. 48.
    Hammel, K. E., Kapich, A. N., Jensen, K. A., & Ryan, Z. C. (2002). Enzyme and Microbial Technology, 30, 445–453.Google Scholar
  49. 49.
    Robertson, S. A., Mason, S. L., Hack, E., & Abbott, G. D. (2008). A comparison of lignin oxidation, enzymatic activity and fungal growth during white-rot decay of wheat straw. Organic Geochemistry, 39(8), 945–951.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jasmina Ćilerdžić
    • 1
    Email author
  • Milica Galić
    • 1
  • Žarko Ivanović
    • 2
  • Ilija Brčeski
    • 3
  • Jelena Vukojević
    • 1
  • Mirjana Stajić
    • 1
  1. 1.Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Plant Protection and EnvironmentBelgradeSerbia
  3. 3.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations