Abstract
Indole is a typical nitrogen-containing aromatic pollutant in coking wastewater, and it can be used for the microbial production of indigo, one of the oldest dyestuffs. In this study, the activated sludge system bioaugmented with two indigo-producing bacterial strains, wild strain Comamonas sp. MQ and recombinant Escherichia coli (ND_IND), was constructed to investigate indigo bioproduction from indole. During the operation, the bioaugmentation could promote the production of indigo, especially in early stages, and the indigo yields gradually increased from 17.5 ± 0.4 to 44.3 ± 0.5 mg/L with the increase of influent indole (80 to 282 mg/L). Illumina MiSeq sequencing revealed that the microbial community could have a noticeable shift driven by the bioaugmentation and high indole pressure. The indigenous bacteria could be more responsible for indigo production, and the dominant genera Comamonas, Diaphorobacter, Paracoccus, Aquamicrobium, Pseudomonas, and Truepera could be the key functional taxa. Based on FAPROTAX (Functional Annotation of Prokaryotic Taxa) analysis, the nitrogen metabolism-related functional groups could play important roles in indole biotransformation and indigo biosynthesis. This study should provide insights into microbial production of indigo by microbial communities.
This is a preview of subscription content, access via your institution.




References
Lee, J. H., Wood, T. K., & Lee, J. (2015). Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology, 23(11), 707–718.
Lee, J. H., & Lee, J. (2010). Indole as an intercellular signal in microbial communities. FEMS Microbiology Reviews, 34(4), 426–444.
Fetzner, S. (1998). Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Applied Microbiology and Biotechnology, 49(3), 237–250.
Doukyu, N., & Aono, R. (1997). Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200. Extremophiles, 1(2), 100–105.
Lin, G. H., Chen, H. P., & Shu, H. Y. (2015). Detoxification of indole by an indole-induced flavoprotein oxygenase from Acinetobacter baumannii. PLoS One, 10(9), e0138798.
Sadauskas, M., Vaitekūnas, J., Gasparavičiūtė, R., & Meškys, R. (2017). Genetic and biochemical characterization of indole biodegradation in Acinetobacter sp. strain O153. Applied and Environmental Microbiology, 83, e01453–e01417.
Qu, Y., Zhang, X., Ma, Q., Ma, F., Zhang, Q., Li, X., Zhou, H., & Zhou, J. (2012). Indigo biosynthesis by Comamonas sp. MQ. Biotechnology Letters, 34(2), 353–357.
Qu, Y., Xu, B., Zhang, X., Ma, Q., Zhou, H., Kong, C., Zhang, Z., & Zhou, J. (2013). Biotransformation of indole by whole cells of recombinant biphenyl dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase. Biochemical Engineering Journal, 72, 54–60.
Gray, P. H. H. (1928). The formation of indigotin from indol by soil bacteria. Proceedings of the Royal Society of London B, 102(717), 263–280.
O’Connor, K. E., & Hartmans, S. (1998). Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnology Letters, 20(3), 219–223.
Pathak, H., & Madamwar, D. (2010). Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. Applied Biochemistry and Biotechnology, 160(6), 1616–1626.
Mercadal, J. P. R., Isaac, P., Siñeriz, F., & Ferrero, M. A. (2012). Indigo production by Pseudomonas sp. J26, a marine naphthalene-degrading strain. Journal of Basic Microbiology, 50, 290–293.
Wang, J., Zhang, X., Fan, J., Zhang, Z., Ma, Q., & Peng, X. (2015). Indigoids biosynthesis from indole by two phenol-degrading strains, Pseudomonas sp. PI1 and Acinetobacter sp. PI2. Applied Biochemistry and Biotechnology, 176(5), 1263–1276.
Fukuoka, K., Tanaka, K., Ozeki, Y., & Kanaly, R. A. (2015). Biotransformation of indole by Cupriavidus sp. strain KK10 proceeds through N-heterocyclic- and carbocyclic-aromatic ring cleavage and production of indigoids. International Biodeterioration & Biodegradation, 97, 13–14.
Zhang, X., Qu, Y., Ma, Q., Zhou, H., Li, X., Kong, C., & Zhou, J. (2013). Cloning and expression of naphthalene dioxygenase genes from Comamonas sp. MQ for indigoids production. Process Biochemistry, 48(4), 581–587.
Kim, J. Y., Kim, J. K., Lee, S. O., Kim, C. K., & Lee, K. (2005). Multicomponent phenol hydroxylase-catalysed formation of hydroxyindoles and dyestuffs from indole and its derivatives. Letters in Applied Microbiology, 41(2), 163–168.
Kim, H. J., Jang, S., Kim, J., Yang, Y. H., Kim, Y. G., Kim, B. G., & Choi, K. Y. (2017). Biosynthesis of indigo in Escherichia coli expressing self-sufficient CYP102A from Streptomyces cattleya. Dyes and Pigments, 140, 29–35.
Han, G. H., Bang, S. E., Babu, B. K., Chang, M., Shin, H. J., & Kim, S. W. (2011). Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochemistry, 46(3), 788–791.
Qu, Y., Ma, Q., Liu, Z., Wang, W., Tang, H., Zhou, J., & Xu, P. (2017). Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Molecular Microbiology, 106(6), 905–918.
Kleerebezem, R., & van Loosdrecht, M. C. (2007). Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 18(3), 207–212.
Marshall, C. W., LaBelle, E. V., & May, H. D. (2013). Production of fuels and chemicals from waste by microbiomes. Current Opinion in Biotechnology, 24(3), 391–397.
Qu, Y., Zhang, X., Ma, Q., Deng, J., Deng, Y., Van Nostrand, J. D., Wu, L., He, Z., Qin, Y., Zhou, J., & Zhou, J. (2015). Microbial community dynamics and activity link to indigo production from indole in bioaugmented activated sludge systems. PLoS One, 10(9), e0138455.
Zhang, X., Qu, Y., Ma, Q., Zhang, Z., Li, D., Wang, J., Shen, W., Shen, E., & Zhou, J. (2015). Illumina MiSeq sequencing reveals diverse microbial communities of activated sludge systems stimulated by different aromatics for indigo biosynthesis from indole. PLoS One, 10(4), e0125732.
Boon, N., Goris, J., De Vos, P., Verstraete, W., & Top, E. M. (2000). Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Applied and Environmental Microbiology, 66(7), 2906–2913.
Bai, Y., Sun, Q., Sun, R., Wen, D., & Tang, X. (2011). Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters. Environmental Science & Technology, 45(5), 1940–1948.
Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S. G., & Alvarez-Cohen, L. (2015). High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio, 6, e02288–e02214.
Ma, Q., Qu, Y., Shen, W., Zhang, Z., Wang, J., Liu, Z., Li, D., Li, H., & Zhou, J. (2015). Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 179, 436–443.
Ma, Q., Qu, Y., Zhang, X., Liu, Z., Li, H., Zhang, Z., Wang, J., Shen, W., & Zhou, J. (2015). Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems. Scientific Reports, 5, 17674.
Zhou, J., Deng, Y., Zhang, P., Xue, K., Liang, Y., Van Nostrand, J. D., Yang, Y., He, Z., Wu, L., Stahl, D. A., Hazen, T. C., Tiedje, J. M., & Arkin, A. P. (2014). Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences, 111(9), E836–E845.
Zhang, J., Wen, D., Zhao, C., & Tang, X. (2014). Bioaugmentation accelerates the shift of bacterial community structure against shock load: a case study of coking wastewater treatment by zeolite-sequencing batch reactor. Applied Microbiology and Biotechnology, 98(2), 863–873.
Joshi, D. R., Zhang, Y., Gao, Y., Liu, Y., & Yang, M. (2017). Biotransformation of nitrogen-and sulfur-containing pollutants during coking wastewater treatment: correspondence of performance to microbial community functional structure. Water Research, 121, 338–348.
Yadav, T. C., Khardenavis, A. A., & Kapley, A. (2014). Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresource Technology, 165, 257–264.
Tikariha, H., Pal, R. R., Qureshi, A., Kapley, A., & Purohit, H. J. (2016). In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1. Gene, 591(2), 382–392.
Wu, Y., Arumugam, K., Tay, M. Q. X., Seshan, H., Mohanty, A., & Cao, B. (2015). Comparative genome analysis reveals genetic adaptation to versatile environmental conditions and importance of biofilm lifestyle in Comamonas testosteroni. Applied Microbiology and Biotechnology, 99(8), 3519–3532.
Srinandan, C. S., Shah, M., Patel, B., & Nerurkar, A. S. (2011). Assessment of denitrifying bacterial composition in activated sludge. Bioresource Technology, 102(20), 9481–9489.
Chang, Y. C., Takada, K., Choi, D., Toyama, T., Sawada, K., & Kikuchi, S. (2013). Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degradation pathway. Applied Biochemistry and Biotechnology, 170(2), 381–398.
Wang, F., Li, C., Wang, H., Chen, W., & Huang, Q. (2016). Characterization of a phenanthrene-degrading microbial consortium enriched from petrochemical contaminated environment. International Biodeterioration & Biodegradation, 115, 286–292.
Goddard, A. D., Bali, S., Mavridou, D. A., Luque-Almagro, V. M., Gates, A. J., Dolores Roldán, M., Newstead, S., Richardson, D. J., & Ferguson, S. J. (2017). The Paracoccus denitrificans NarK-like nitrate and nitrite transporters-probing nitrate uptake and nitrate/nitrite exchange mechanisms. Molecular Microbiology, 103(1), 117–133.
Zhang, H., Kallimanis, A., Koukkou, A. I., & Drainas, C. (2004). Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Applied Microbiology and Biotechnology, 65(1), 124–131.
Singh, D., & Ramanathan, G. (2013). Biomineralization of 3-nitrotoluene by Diaphorobacter species. Biodegradation, 24(5), 645–655.
Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2007). Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Applied Microbiology and Biotechnology, 77(2), 403–409.
Louca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272–1277.
Madsen, E. L., & Bollag, J. M. (1988). Pathway of indole metabolism by a denitrifying microbial community. Archives of Microbiology, 151(1), 71–76.
Yang, Z., Zhou, J., Xu, Y., Zhang, Y., Luo, H., Chang, K., & Wang, Y. (2017). Analysis of the metabolites of indole degraded by an isolated Acinetobacter pittii L1. BioMed Research International, 2017, 2564363.
Hong, X., Zhang, X., Liu, B., Mao, Y., Liu, Y., & Zhao, L. (2010). Structural differentiation of bacterial communities in indole-degrading bioreactors under denitrifying and sulfate-reducing conditions. Research in Microbiology, 161(8), 687–693.
Funding
This work was supported by National Natural Science Foundation of China (No. 51508068) and the Fundamental Research Funds for the Central Universities (No. DUT16RC(3)118).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Ethical Statement
The article does not contain any studies with human participants performed by any of the authors.
Electronic Supplementary Material
ESM 1
(DOC 1674 kb)
Rights and permissions
About this article
Cite this article
Zhang, X., Qu, Y., Ma, Q. et al. Performance and Microbial Community Analysis of Bioaugmented Activated Sludge System for Indigo Production from Indole. Appl Biochem Biotechnol 187, 1437–1447 (2019). https://doi.org/10.1007/s12010-018-2879-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-018-2879-z
Keywords
- Indigo
- Indole
- Bioaugmentation
- Microbial community