Abstract
A cosmid metagenomic library containing 1.3 × 105 clones was created from a soil sample. A novel gene (fae-xuan) encoding a feruloyl esterase was identified through functional screening. Primary sequence analysis showed that the gene consisted of 759 base pairs and encoded a protein of 252 amino acids. The gene was expressed in Escherichia coli BL21 (DE3) and the corresponding purified recombinant enzyme exhibited a molecular weight of 29 kDa. The FAE-Xuan showed high activity (40.0 U/mg) toward methyl ferulate with an optimal temperature and pH of 30 °C and 5.0, respectively. Besides methyl ferulate, FAE-Xuan can also hydrolyze methyl sinapate and methyl p-coumarate. The substrate utilization preferences and phylogenetic analysis indicated that FAE-Xuan belongs to type A FAE. FAE-Xuan was quite stable over a broad pH range from 3.0 to 10.0. The activity reduced remarkably in presence of Cu2+. FAE-Xuan can enhance the quantity of ferulic acid from de-starched wheat bran in presence of xylanase. The work presented here highlighted the effectiveness of metagenomic strategy in identifying novel FAEs with diverse properties for potential use in industrial production.
This is a preview of subscription content, access via your institution.









Change history
26 February 2019
The original version of this article unfortunately contained a mistake in the image and caption of Fig. 6. The corrected version of the image and caption is shown here.
References
Faulds, C. B. (2010). What can feruloyl esterases do for us? Phytochemistry Reviews, 9(1), 121–132.
Wong, D. W. (2006). Feruloyl esterase: a key enzyme in biomass degradation. Applied Biochemistry & Biotechnology Part A Enzyme Engineering & Biotechnology, 133(2), 87–112.
Ou, S., & Kwok, K. C. (2004). Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84(11), 1261–1269.
Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86–93.
Record, E., Asther, M., Sigoillot, C., Pagès, S., Punt, P. J., Delattre, M., Haon, M., Ca, V. D. H., Sigoillot, J. C., & Lesagemeessen, L. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Applied Microbiology and Biotechnology, 62(4), 349–355.
Lynchj, P., Prema, D., Van Hamme, D., Church, J. S., & Beauchemin, K. A. (2014). Fiber degradability, chemical composition and conservation characteristics of alfalfa haylage ensiled with exogenous fbrolytic enzymes and a ferulic acid esterase-producing inoculant. Revue Canadienne De Science Animale, 94, 697–704.
Hassan, S., & Hugouvieux-Cotte-Pattat, N. (2011). Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectate lyases by ferulic acid. Journal of Bacteriology, 193(4), 963–970.
Koseki, T., Takahashi, K., Fushinobu, S., Iefuji, H., Iwano, K., Hashizume, K., & Matsuzawa, H. (2005). Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence. Biochimica Et Biophysica Acta General Subjects, 1722(2), 200–208.
Rashamuse, K., Burton, S., & Cowan, D. (2007). A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. Journal of Applied Microbiology, 103(5), 1610–1620.
Rumbold, K., Biely, P., Mastihubová, M., Gudelj, M., Gübitz, G., Robra, K. H., & Prior, B. A. (2003). Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 69(9), 5622–5626.
Zeng, W., & Chen, H. Z. (2009). Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresource Technology, 100(3), 1371–1375.
Blum, D. L., Kataeva, I. A., Li, X. L., & Ljungdahl, L. G. (2000). Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. Journal of Bacteriology, 182(5), 1346–1351.
Dalrymple, B. P., & Swadling, Y. (1997). Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology, 143(4), 1203–1210.
Li, J., Cai, S., Luo, Y., & Dong, X. (2011). Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Applied and Environmental Microbiology, 77(17), 6141–6147.
Mark, B., Petra, H., Davidp, W., Jesals, P., Flash, B., Timothys, H., & Uwet, B. (2008). Characterization of lipases and esterases from metagenomes for lipid modification. Journal of the American Oil Chemists Society, 85, 47–53.
Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews: MMBR, 68(4), 669–685.
Rashamuse, K., Sanyika, W., Ronneburg, T., & Brady, D. (2012). A feruloyl esterase derived from a leachate metagenome library. BMB Reports, 45(1), 14–19.
Cheng, F., Sheng, J., Dong, R., Men, Y., Gan, L., & Shen, L. (2012). Novel xylanase from a Holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. Journal of Agricultural and Food Chemistry, 60(51), 12516–12524.
Elend, C., Schmeisser, C., Leggewie, C., Babiak, P., Carballeira, J. D., Steele, H. L., Reymond, J. L., Jaeger, K. E., & Streit, W. R. (2006). Isolation and biochemical characterization of two novel metagenome-derived esterases. Applied Biochemistry and Biotechnology, 169, 3637–3645.
Li, H., Fei, Z., Gong, J., Yang, T., Xu, Z., & Shi, J. (2015). Screening and characterization of a highly active chitosanase based on metagenomic technology. Journal of Molecular Catalysis B: Enzymatic, 111, 29–35.
Lee, D. G., Jeon, J. H., Jang, M. K., Kim, N. Y., Lee, J. H., Lee, J. H., Kim, S. J., Kim, G. D., & Lee, S. H. (2007). Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnology Letters, 29(3), 465–472.
Torsvik, V., Daae, F. L., Sandaa, R. A., & Ovreås, L. (1998). Novel techniques for analysing microbial diversity in natural and perturbed environments. Journal of Biotechnology, 64(1), 53–62.
Torsvik, V., Goksøyr, J., & Daae, F. L. (1990). High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56(3), 782–787.
Brady, S. F. (2007). Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nature Protocols, 2(5), 1297–1305.
Donaghy, J., Kelly, P. F., & Mckay, A. M. (1998). Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Applied Microbiology and Biotechnology, 50(2), 257–260.
Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y. K. (2005). Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 272(20), 5101–5109.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., Mcwilliam, H., Remmert, M., & Söding, J. (2014). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539–544.
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., & Bordoli, L. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, 252–258.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.
Dilokpimol, A., Mäkelä, M. R., Aguilarpontes, M. V., Benoitgelber, I., Hildén, K. S., & Vries, R. P. (2016). Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels, 9(1), 231–248.
Dilokpimol, A., Mäkelä, M. R., Mansouri, S., Belova, O., Waterstraat, M., Bunzel, M., Vries, R. P. D., & Hildén, K. S. (2017). Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. New Biotechnology, 37(Pt B), 200–209.
Shin, H. D., & Chen, R. R. (2007). A type B feruloyl esterase from Aspergillus nidulans with broad pH applicability. Applied Microbiology and Biotechnology, 73(6), 1323–1330.
Zeng, Y., Yin, X., Wu, M. C., Yu, T., Feng, F., Zhu, T. D., & Pang, Q. F. (2014). Expression of a novel feruloyl esterase from Aspergillus oryzae in Pichia pastoris with esterification activity. Journal of Molecular Catalysis B: Enzymatic, 110, 140–146.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5, 245–249.
Iqbal, H. A., Feng, Z., & Brady, S. F. (2012). Biocatalysts and small molecule products from metagenomic studies. Current Opinion in Chemical Biology, 16(1-2), 109–116.
Hu, X. P., Heath, C., Taylor, M. P., Tuffin, M., & Cowan, D. (2011). A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles Life Under Extreme Conditions, 16, 79–86.
Wang, K., Li, G., Yu, S. Q., Zhang, C. T., & Liu, Y. H. (2010). A novel metagenome-derived β-galactosidase: gene cloning, overexpression, purification and characterization. Applied Microbiology and Biotechnology, 88(1), 155–165.
Sang, S. L., Li, G., Hu, X. P., & Liu, Y. H. (2011). Molecular cloning, overexpression and characterization of a novel feruloyl esterase from a soil metagenomic library. Journal of Molecular Microbiology and Biotechnology, 20(4), 196–203.
Arpigny, J. L., & Jaeger, K. (1999). Bacterial lipolytic enzymes: classification and properties. The Biochemical Journal, 343(1), 177–183.
Sayer, C., Isupov, M. N., Bonchosmolovskaya, E., & Littlechild, J. A. (2015). Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis. FEBS Journal, 282(15), 2846–2857.
Pereira, M. R., Maester, T. C., Mercaldi, G. F., Lemos, E. G. D. M., Hyvönen, M., & Balan, A. (2017). From a metagenomic source to a high-resolution structure of a novel alkaline esterase. Applied Microbiology and Biotechnology, 101, 1–15.
Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2004). Functional classification of the microbial feruloyl esterases. Applied Microbiology and Biotechnology, 63(6), 647–652.
Zhang, S. B., Wang, L., Liu, Y., Zhai, H. C., Cai, J. P., & Hu, Y. S. (2015). Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expression and Purification, 115, 153–157.
Nieter, A., Haaseaschoff, P., Linke, D., Nimtz, M., & Berger, R. G. (2014). A halotolerant type A feruloyl esterase from Pleurotus eryngii. Fungal Biology, 118(3), 348–357.
Damásio, A. R. L., Braga, C. M. P., Brenelli, L. B., Citadini, A. P., Mandelli, F., Cota, J., Almeida, R. F. D., Salvador, V. H., Paixao, D. A. A., & Segato, F. (2013). Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology, 97(15), 6759–6767.
Faulds, C. B., & Williamson, G. (1991). The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology, 137(10), 2339–2345.
Vries, R. P. D., Michelsen, B., Poulsen, C. H., Kroon, P. A., Heuvel, R. H. V. D., Faulds, C. B., Williamson, G., Hombergh, J. P. V. D., & Visser, J. (1997). The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Applied and Environmental Microbiology, 63(12), 4638–4644.
Garcia-Conesa, M. T., Crepin, V. F., Goldson, A. J., Williamson, G., Cummings, N. J., Connerton, I. F., Faulds, C. B., & Kroon, P. A. (2004). The feruloyl esterase system of Talaromyces stipitatus: production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with a broad substrate specificity. Journal of Biotechnology, 108(3), 227–241.
Debeire, P., Khoune, P., Jeltsch, J. M., & Phalip, V. (2012). Product patterns of a feruloyl esterase from Aspergillus nidulans on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. Bioresource Technology, 119, 425–428.
Lai, K. K. (2009). Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Applied and Environmental Microbiology, 75(15), 5018–5024.
Donaghy, J. A., Bronnenmeier, K., Sotokelly, P. F., & Mckay, A. M. (2000). Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. Journal of Applied Microbiology, 88(3), 458–466.
Topakas, E., Moukouli, M., Dimarogona, M., & Christakopoulos, P. (2012). Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Applied Microbiology and Biotechnology, 94(2), 399–411.
Abokitse, K., Wu, M., Bergeron, H., Grosse, S., & Lau, P. C. (2010). Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Applied Microbiology and Biotechnology, 87(1), 195–203.
Rashamuse, K., Ronneburg, T., Sanyika, W., Mathiba, K., Mmutlane, E., & Brady, D. (2014). Metagenomic mining of feruloyl esterases from termite enteric flora. Applied Microbiology and Biotechnology, 98(2), 727–737.
Funding
This work was supported by the Fund for Qing Lan Project of Jiangsu Province, by the Fundamental Research Funds for the Central Universities (KYYJ201708), and by special funds of agro-product quality safety risk assessment of the Ministry of Agriculture of the People’s Republic of China (GJFP201701505).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Human and animal rights
This article does not contain any studies with human or animal subjects.
Rights and permissions
About this article
Cite this article
Li, X., Guo, J., Hu, Y. et al. Identification of a Novel Feruloyl Esterase by Functional Screening of a Soil Metagenomic Library. Appl Biochem Biotechnol 187, 424–437 (2019). https://doi.org/10.1007/s12010-018-2832-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-018-2832-1
Keywords
- Feruloyl esterase
- Metagenomic library
- Protein expression
- Functional screening
- pH stability