Factors Affecting Production of Itaconic Acid from Mixed Sugars by Aspergillus terreus

Abstract

Itaconic acid (IA; a building block platform chemical) is currently produced industrially from glucose by fermentation with Aspergillus terreus. In order to expand the use of IA, its production cost must be lowered. Lignocellulosic biomass has the potential to serve as low-cost source of sugars for IA production. It was found that the fungus cannot produce IA from dilute acid pretreated and enzymatically saccharified wheat straw hydrolysate even at 100-fold dilution. The effects of typical compounds (acetic acid, furfural, HMF and Mn2+, enzymes, CaSO4), culture conditions (initial pH, temperature, aeration), and medium components (KH2PO4, NH4NO3, CaCl2·2H2O, FeCl3·6H2O) on growth and IA production by A. terreus NRRL 1972 using mixed sugar substrate containing glucose, xylose, and arabinose (4:3:1, 80 g L−1) mimicking the wheat straw hydrolysate were investigated. Acetic acid, furfural, Mn2+, and enzymes were strong inhibitors to both growth and IA production from mixed sugars. Optimum culture conditions (pH 3.1, 33 °C, 200 rpm) and medium components (0.8 g KH2PO4, 3 g NH4NO3, 2.0 g CaCl2·2H2O, 0.83–3.33 mg FeCl3·6H2O per L) as well as tolerable levels of inhibitors (0.4 g acetic acid, < 0.1 g furfural, 100 mg HMF, < 5.0 ppb Mn2+, 24 mg CaSO4 per L) for mixed sugar utilization were established. The results will be highly useful for developing a bioprocess technology for IA production from lignocellulosic feedstocks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Nubel, R. C., & Ratajak, E. J. (1962). Process for producing itaconic acid. US Patent, 3, 044,941.

    Google Scholar 

  2. 2.

    Batti, M., & Schweiger, L. B. (1963). Process for the production of itaconic acid. US Patent, 3, 078,217.

    Google Scholar 

  3. 3.

    Willke, T., & Vorlop, K.-D. (2001). Biotechnological production of itaconic acid. Applied Microbiology and Biotechnology, 56(3-4), 289–295.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Saha, B. C. (2017). Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. Journal of Industrial Microbiology & Biotechnology, 44(2), 303–315.

    Article  CAS  Google Scholar 

  5. 5.

    Choi, S., Song, C. W., Shin, J. H., & Lee, S. Y. (2015). Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, 28, 223–239.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Okabe, M., Lies, D., Kanamasa, S., & Park, E. Y. (2009). Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Applied Microbiology and Biotechnology, 84(4), 597–606.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Klement, T., & Büchs, J. (2013). Itaconic acid—a biotechnological process in change. Bioresource Technology, 135, 422–431.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Werphy, T., & Peterson, G. (2004). Top value added chemicals from biomass: volume 1—results of screening for potential candidates from sugars and synthetic gas. US Department of Energy, pp. 1–76. http://www1.eere.energy.gov/bioenergy/pdfs/35523.pdf.

  9. 9.

    Tippkötter, N., Duwe, A.-N., Wiesen, S., Sieker, T., & Ulber, R. (2014). Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids. Bioresource Technology, 167, 447–455.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Jimenez-Quero, A., Pollet, E., Zhao, M., Marchioni, E., Averous, L., & Phalip, V. (2016). Itaconic and fumaric acid production from biomass hydrolyzates by Aspergillus strains. Journal of Microbiology and Biotechnology, 26(9), 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Pedrosa, G. B., Montipo, S., Mario, D. A. N., Alves, S. H., & Martins, A. F. (2017). Building block itaconic acid from left-over biomass. Biomass Conversion & Biorefinery, 7(1), 23–35.

    Article  CAS  Google Scholar 

  12. 12.

    Krull, S., Eidt, L., Hevekerl, A., Kuenz, A., & Prüße, U. (2018). Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochemistry, 63, 169–176.

    Article  CAS  Google Scholar 

  13. 13.

    Saha, B. C., Kennedy, G. J., Qureshi, N., & Bowman, M. J. (2017). Production of itaconic acid from pentose sugars by Aspergillus terreus. Biotechnology Progress, 33(4), 1059–1067.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Saha, B. C., & Kennedy, G. J. (2018). Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. Journal of Microbiological Methods, 144, 53–59.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Hervekerl, A., Kuenz, A., & Vorlop, K.-D. (2014). Filamentous fungi in microtiter plates—an easy way to optimize itaconic acid production with Aspergillus terreus. Applied Microbiology and Biotechnology, 98(16), 6983–6989.

    Article  CAS  Google Scholar 

  16. 16.

    Saha, B. C., Nichols, N. N., & Cotta, M. A. (2011). Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresource Technology, 102(23), 10892–10897.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Karaffa, L., Diaz, R., Papp, B., Fekete, E., Sándor, E., & Kubicek, C. P. (2015). A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Applied Microbiology and Biotechnology, 99(19), 7937–7944.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Bradford, H. H. (1976). Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Bakota, E. L., Dunn, R. O., & Seal, X. L. (2015). Heavy metals screening of rice bran oils and its relation to composition. European Journal of Lipid Science and Technology, 117(9), 1452–1462.

    Article  CAS  Google Scholar 

  20. 20.

    Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30(5), 279–291.

    Article  CAS  Google Scholar 

  21. 21.

    Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P., & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562–2568.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Rychtera, M., & Wase, D. A. (1981). The growth of Aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH. Journal of Chemical Technology & Biotechnology, 31(1), 509–521.

    Article  CAS  Google Scholar 

  23. 23.

    Gyamerah, M. H. (1995). Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Applied Microbiology and Biotechnology, 44(3-4), 356–361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank James Swezey, microbiologist (retired), for supplying Aspergillus terreus NRRL 1972 from ARS Culture Collection, Peoria, IL, and Kim Ascherl for the metal analysis by ICP-OES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Badal C. Saha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha, B.C., Kennedy, G.J., Bowman, M.J. et al. Factors Affecting Production of Itaconic Acid from Mixed Sugars by Aspergillus terreus. Appl Biochem Biotechnol 187, 449–460 (2019). https://doi.org/10.1007/s12010-018-2831-2

Download citation

Keywords

  • Itaconic acid
  • Aspergillus terreus
  • Submerged fermentation
  • Mixed sugars
  • Inhibitory compounds
  • Mn2+