Skip to main content
Log in

Genome-Wide Identification and Analysis of Biotic and Abiotic Stress Regulation of C4 Photosynthetic Pathway Genes in Rice

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Photosynthetic fixation of CO2 is more efficient in C4 than in C3 plants. Rice is a C3 plant and a potential target for genetic engineering of the C4 pathway. It is known that genes encoding C4 enzymes are present in C3 plants. However, no systematic analysis has been conducted to determine if these C4 gene family members are expressed in diverse rice genotypes. In this study, we identified 15 genes belonging to the five C4 gene families in rice genome through BLAST search using known maize C4 photosynthetic pathway genes. Phylogenetic relationship of rice C4 photosynthetic pathway genes and their isoforms with other grass genomes (Brachypodium, maize, Sorghum and Setaria), showed that these genes were highly conserved across grass genomes. Spatiotemporal, hormone, and abiotic stress specific expression pattern of the identified genes revealed constitutive as well as inductive responses of the C4 photosynthetic pathway in different tissues and developmental stages of rice. Expression levels of C4 specific gene family members in flag leaf during tillering stage were quantitatively analyzed in five rice genotypes covering three species, viz. Oryza sativa, ssp. japonica (cv. Nipponbare), Oryza sativa, ssp. indica (cv IR64, Swarna), and two wild species Oryza barthii and Oryza australiensis. The results showed that all the identified genes expressed in rice and exhibited differential expression pattern during different growth stages, and in response to biotic and abiotic stress conditions and hormone treatments. Our study concludes that C4 photosynthetic pathway genes present in rice play a crucial role in stress regulation and might act as targets for C4 pathway engineering via CRISPR-mediated breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

As:

arsenic

BAP:

6-benzylaminopurine

BSC:

bundle sheath cells

Cd:

cadmium

CDS:

coding DNA sequence

Cr:

chromium

GA3 :

gibberellic acid

IAA:

indole-3-acetic acid

MC:

mesophyll cell

mdh :

malate dehydrogenase

MPSS:

massively parallel signature sequencing

NAA:

1-naphthaleneacetic acid

nadp-me :

malic enzyme

OAA:

oxaloacetate

Pb:

lead

PEP:

phosphoenolpyruvate

PEPC:

phosphoenol pyruvate carboxylase

ppdk :

pyruvate orthophosphate dikinase

RuBisCo:

ribulosebishosphate carboxylase/oxygenase

RUE:

radiation use efficiencies

References

  1. Hibberd, J. M., Sheehy, J. E., & Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Current Opinion in Plant Biology, 11(2), 228–231. https://doi.org/10.1016/j.pbi.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  2. Elert, E. (2014). Rice by the numbers: A good grain. Nature, 514(7524), S50–S51. https://doi.org/10.1038/514S50a.

    Article  PubMed  Google Scholar 

  3. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620. https://doi.org/10.1126/science.1204531 (New York, N.Y.).

    Article  CAS  PubMed  Google Scholar 

  4. Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14562–14567. https://doi.org/10.1073/pnas.1001222107.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bansal, K. C., Viret, J. F., Haley, J., Khan, B. M., Schantz, R., & Bogorad, L. (1992). Transient expression from cab-m1 and rbcS-m3 promoter sequences is different in mesophyll and bundle sheath cells in maize leaves. Proceedings of the National Academy of Sciences of the United States of America, 89(8), 3654–3658. https://doi.org/10.1073/pnas.89.8.3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bansal, K. C., & Bogorad, L. (1993). Cell type-preferred expression of maize cab-m1: Repression in bundle sheath cells and enhancement in mesophyll cells. Proceedings of the National Academy of Sciences of the United States of America, 90(9), 4057–4061. https://doi.org/10.1073/pnas.90.9.4057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheehy, J. E., Ferrer, A. B., Mitchell, P. L., Pablico, P., & Dionora, M. J. A. (2008). How the rice crop works and why it needs a new engine. In Charting New Pathways to C4 Rice pp. 3–26. doi:https://doi.org/10.1142/9789812709523_0001

  8. Sage, R. F., Christin, P. A., & Edwards, E. J. (2011). The C4 plant lineages of planet Earth. Journal of Experimental Botany, 62(9), 3155–3169. https://doi.org/10.1093/jxb/err048.

    Article  CAS  PubMed  Google Scholar 

  9. Ludwig, M. (2013). Evolution of the C4 photosynthetic pathway: Events at the cellular and molecular levels. Photosynthesis Research, 117(1–3), 147–161. https://doi.org/10.1007/s11120-013-9853-y.

    Article  CAS  PubMed  Google Scholar 

  10. Kiniry, J. R. R., Jones, C. A. A., O’toole, J. C. C., Blanchet, R., Cabelguenne, M., & Spanel, D. A. A. (1989). Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Research, 20(1), 51–64. https://doi.org/10.1016/0378-4290(89)90023-3.

    Article  Google Scholar 

  11. Mitchell, P. L., & Sheehy, J. E. (2006). Supercharging rice photosynthesis to increase yield. New Phytologist, 171(4), 688–693. https://doi.org/10.1111/j.1469-8137.2006.01855.x.

    Article  CAS  PubMed  Google Scholar 

  12. Long, S. P., Zhu, X.-G. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29(3), 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x.

    Article  CAS  Google Scholar 

  13. Kajala, K., Covshoff, S., Karki, S., Woodfield, H., Tolley, B. J., Dionora, M. J. A., Mogul, R. T., Mabilangan, A. E., Danila, F. R., Hibberd, J. M., & Quick, W. P. (2011). Strategies for engineering a two-celled C(4) photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3001–3010. https://doi.org/10.1093/jxb/err022.

    Article  CAS  PubMed  Google Scholar 

  14. Miyao, M., Masumoto, C., Miyazawa, S. I., & Fukayama, H. (2011). Lessons from engineering a single-cell C4 photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3021–3029. https://doi.org/10.1093/jxb/err023.

    Article  CAS  PubMed  Google Scholar 

  15. Langdale, J. A. (2011). C4 cycles: Past, present, and future research on C4 photosynthesis. Plant Cell, 23(11), 3879–3892. https://doi.org/10.1105/tpc.111.092098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. von Caemmerer, S., Quick, W. P., & Furbank, R. T. (2012). The development of C4 rice: Current progress and future challenges. Science, 336(6089), 1671–1672. https://doi.org/10.1126/science.1220177.

    Article  CAS  Google Scholar 

  17. Hibberd, J. M., & Quick, W. P. (2002). Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature, 415(6870), 451–454. https://doi.org/10.1038/415451a.

    Article  CAS  PubMed  Google Scholar 

  18. Muthusamy, S. K., Singh, S. K., Singh, I., Singh, A. K., Chinnusamy, V., & Bansal, K. C. (2013). Expression analysis of C4 photosynthetic pathway related genes in seven rice genotypes during grain filling stage. Proc Indian Natl Sci Acad, 79(1), 91–98.

    CAS  Google Scholar 

  19. Imaizumi, N., Samejima, M., & Ishihara, K. (1997). Characteristics of photosynthetic carbon metabolism of spikelets in rice. Photosynthesis Research, 52(2), 75–82. https://doi.org/10.1023/A:1005887931498.

    Article  CAS  Google Scholar 

  20. Rangan, P., Furtado, A., & Henry, R. J. (2016). New evidence for grain specific C4 photosynthesis in wheat. Scientific Reports, 6(1), 31721. https://doi.org/10.1038/srep31721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langdale, J. A., & Nelson, T. (1991). Spatial regulation of photosynthetic development in C4 plants. Trends Genet: TIG, 7(6), 191–196. https://doi.org/10.1016/0168-9525(91)90435-S.

    Article  CAS  PubMed  Google Scholar 

  22. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytol, 161(2), 341–370. https://doi.org/10.1111/j.1469-8137.2004.00974.x.

    Article  CAS  Google Scholar 

  23. Makino, A., Sakuma, I., Sudo, E., & Mae, T. (2003). Differences between maize and rice in N-use efficiency for photosynthesis and protein allocation. Plant and Cell Physiology, 44(9), 952–956. https://doi.org/10.1093/pcp/pcg113.

    Article  CAS  PubMed  Google Scholar 

  24. Raines, C. A. (2011). Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies. Plant Physiology, 155(1), 36–42. https://doi.org/10.1104/pp.110.168559.

    Article  CAS  PubMed  Google Scholar 

  25. Matsuoka, M., Furbank, R. T., Fukayama, H., & Miyao, M. (2001). Molecular engineering of C4 photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 297–314. https://doi.org/10.1146/annurev.arplant.52.1.297.

    Article  CAS  PubMed  Google Scholar 

  26. Emanuelsson, O., Brunak, S., von Heijne, G., & Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2(4), 953–971. https://doi.org/10.1038/nprot.2007.131.

    Article  CAS  PubMed  Google Scholar 

  27. Horton, P., Park, K.-J. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(Web Server issue), W585–W587. https://doi.org/10.1093/nar/gkm259.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(Database issue), D1178–D1186. https://doi.org/10.1093/nar/gkr944.

    Article  CAS  PubMed  Google Scholar 

  29. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Letunic, I., Doerks, T., & Bork, P. (2012). SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Research, 40(Database issue), D302–D305. https://doi.org/10.1093/nar/gkr931.

    Article  CAS  PubMed  Google Scholar 

  31. Muthusamy, S. K., Dalal, M., Chinnusamy, V., & Bansal, K. C. (2016). Differential regulation of genes coding for organelle and cytosolic ClpATPases under biotic and abiotic stresses in wheat. Frontiers in Plant Science, 7, 929. https://doi.org/10.3389/FPLS.2016.00929.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Katiyar, A., Smita, S., Muthusamy, S. K., Chinnusamy, V., Pandey, D. M., & Bansal, K. C. (2015). Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in Plant Science, 6, 506. https://doi.org/10.3389/fpls.2015.00506.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., et al. (2008). Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics, 2008, 420747–420745. https://doi.org/10.1155/2008/420747.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muthusamy, S. K., Dalal, M., Chinnusamy, V., & Bansal, K. C. (2017). Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. Journal of Plant Physiology, 211, 100–113. https://doi.org/10.1016/j.jplph.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  35. Nakano, M., Nobuta, K., Vemaraju, K., Tej, S. S., Skogen, J. W., & Meyers, B. C. (2006). Plant MPSS databases: Signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Research, 34(90001), D731–D735. https://doi.org/10.1093/nar/gkj077.

    Article  CAS  PubMed  Google Scholar 

  36. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262 (San Diego, Calif.).

    Article  CAS  PubMed  Google Scholar 

  37. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. https://doi.org/10.1093/molbev/msr121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Price, G. D., von Caemmerer, S., Evans, J. R., Yu, J. W., Lloyd, J., Oja, V., Kell, P., Harrison, K., Gallagher, A., & Badger, M. R. (1994). Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta, 193(3), 331–340. https://doi.org/10.1007/BF00201810.

    Article  CAS  Google Scholar 

  39. DiMario, R. J., Clayton, H., Mukherjee, A., Ludwig, M., & Moroney, J. V. (2017). Plant carbonic anhydrases: Structures, locations, evolution, and physiological roles. Molecular Plant, 10(1), 30–46. https://doi.org/10.1016/j.molp.2016.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moroney, J. V., Bartlett, S. G., & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae: Invited review. Plant, Cell and Environment, 24(2), 141–153. https://doi.org/10.1046/j.1365-3040.2001.00669.x.

    Article  CAS  Google Scholar 

  41. Wang, X., Gowik, U., Tang, H., Bowers, J., Westhoff, P., & Paterson, A. (2009). Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biology, 10(6), R68. https://doi.org/10.1186/gb-2009-10-6-r68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vidal, J., & Chollet, R. (1997). Regulatory phosphorylation of C4 PEP carboxylase. Trends in Plant Science, 2(6), 230–237. https://doi.org/10.1016/S1360-1385(97)01046-7.

    Article  Google Scholar 

  43. Masumoto, C., Miyazawa, S.-I. S.-I., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., et al. (2010). Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proceedings of the National Academy of Sciences, 107(11), 5226–5231. https://doi.org/10.1073/pnas.0913127107.

    Article  Google Scholar 

  44. Chollet, R., Vidal, J., & O’Leary, M. H. (1996). Pyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 273–298. https://doi.org/10.1146/annurev.arplant.47.1.273.

    Article  CAS  PubMed  Google Scholar 

  45. Sánchez, R., & Cejudo, F. (2003). Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiology, 132(June), 949–957. https://doi.org/10.1104/pp.102.019653.1997.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Doubnerová, V., & Ryšlavá, H. (2011). What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Science, 180(4), 575–583. https://doi.org/10.1016/j.plantsci.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  47. Chi, W., Yang, J., Wu, N., & Zhang, F. (2004). Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Bioscience, Biotechnology, and Biochemistry, 68(9), 1865–1874. https://doi.org/10.1271/bbb.68.1865.

    Article  CAS  PubMed  Google Scholar 

  48. Cairoll, L. J., Dunaway-Mariano, D., Smith, C. M., & Chollet, R. (1990). Determination of the catalytic pathway of C4-leaf pyruvate, orthophosphate dikinase from maize. FEBS Letters, 274(1–2), 178–180. https://doi.org/10.1016/0014-5793(90)81358-U.

    Article  Google Scholar 

  49. Parsley, K., & Hibberd, J. M. (2006). The Arabidopsis PPDK gene is transcribed from two promoters to produce differentially expressed transcripts responsible for cytosolic and plastidic proteins. Plant Molecular Biology, 62(3), 339–349. https://doi.org/10.1007/s11103-006-9023-0.

    Article  CAS  PubMed  Google Scholar 

  50. Dong, X., Li, Y., Chao, Q., Shen, J., Gong, X., Zhao, B., & Wang, B. (2016). Analysis of gene expression and histone modification between C4 and non-C4 homologous genes of PPDK and PCK in maize. Photosynthesis Research, 129(1), 71–83. https://doi.org/10.1007/s11120-016-0271-9.

    Article  CAS  PubMed  Google Scholar 

  51. Hibberd, J. M., & Covshoff, S. (2010). The regulation of gene expression required for C4 photosynthesis. Annual Review of Plant Biology, 61(1), 181–207. https://doi.org/10.1146/annurev-arplant-042809-112238.

    Article  CAS  PubMed  Google Scholar 

  52. Aubry, S., Brown, N. J., & Hibberd, J. M. (2011). The role of proteins in C3 plants prior to their recruitment into the C4 pathway. Journal of Experimental Botany, 62(9), 3049–3059. https://doi.org/10.1093/jxb/err012.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Q., Zhang, Q., Fan, D., & Lu, C. (2006). Photosynthetic light and CO2 utilization and C4 traits of two novel super-rice hybrids. Journal of Plant Physiology, 163(5), 529–537. https://doi.org/10.1016/j.jplph.2005.04.035.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, P., Vlad, D., & Langdale, J. A. (2016). Finding the genes to build C4 rice. Current Opinion in Plant Biology, 31, 44–50. https://doi.org/10.1016/j.pbi.2016.03.012.

    Article  CAS  PubMed  Google Scholar 

  55. Xu, J., Bräutigam, A., Weber, A. P. M., & Zhu, X. G. (2016). Systems analysis of cis-regulatory motifs in C4photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation. Journal of Experimental Botany, 67(17), 5105–5117. https://doi.org/10.1093/jxb/erw275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang, T. T. (1976). The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica, 25(1), 425–441. https://doi.org/10.1007/BF00041576.

    Article  Google Scholar 

  57. Khush, G. S. (1997). Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology, 35(1/2), 25–34. https://doi.org/10.1023/A:1005810616885.

    Article  CAS  PubMed  Google Scholar 

  58. Tsuzuki, M., Miyachi, S., & Edwards, G. E. (1985). Localization of carbonic anhydrase in mesophyll cells of terrestrial C3 plants in relation to CO2 assimilation. Plant and Cell Physiology, 26(5), 881–891. https://doi.org/10.1093/oxfordjournals.pcp.a076983.

    Article  CAS  Google Scholar 

  59. Rumeau, D., Cuine, S., Fina, L., Gault, N., Nicole, M., & Peltier, G. (1996). Subcellular distribution of carbonic anhydrase in Solanum tuberosum L leaves—Characterization of two compartment-specific isoforms. Planta, 199(1), 79–88. https://doi.org/10.1007/BF00196884.

    Article  CAS  PubMed  Google Scholar 

  60. Yu, S., Zhang, X., Guan, Q., Takano, T., & Liu, S. (2007). Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnology Letters, 29(1), 89–94. https://doi.org/10.1007/s10529-006-9199-z.

    Article  CAS  PubMed  Google Scholar 

  61. Matsuoka, M., & Hata, S. (1987). Comparative studies of phosphoenolpyruvate carboxylase from c(3) and c(4) plants. Plant Physiology, 85(4), 947–951.

    Article  CAS  Google Scholar 

  62. Yeo, M. E., Yeo, A. R., & Flowers, T. J. (1994). Photosynthesis and photorespiration in the genus Oryza. Journal of Experimental Botany, 45(5), 553–560. https://doi.org/10.1093/jxb/45.5.553.

    Article  CAS  Google Scholar 

  63. Cornic, G., Bukhov, N. G., Wiese, C., Bligny, R., & Heber, U. (2000). Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants. Role of photosystem I-dependent proton pumping. Planta, 210(3), 468–477. https://doi.org/10.1007/PL00008154.

    Article  CAS  PubMed  Google Scholar 

  64. Saccardy, K., Cornic, G., Brulfert, J., & Reyss, A. (1996). Effect of drought stress on net CO2 uptake by Zea leaves. Planta, 199(4), 589–595. https://doi.org/10.1007/BF00195191.

    Article  CAS  Google Scholar 

  65. Bandyopadhyay, A., Datta, K., Zhang, J., Yang, W., Raychaudhuri, S., Miyao, M., & Datta, S. K. (2007). Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Science, 172(6), 1204–1209. https://doi.org/10.1016/j.plantsci.2007.02.016.

    Article  CAS  Google Scholar 

  66. Cheng, Y., & Long, M. (2007). A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnology Letters, 29(7), 1129–1134. https://doi.org/10.1007/s10529-007-9347-0.

    Article  CAS  PubMed  Google Scholar 

  67. Brar, D. S., & Khush, G. S. (2006). Cytogenetic manipulation and germplasm enhancement of rice (Oryza sativa L.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. CRC Press, Boca Raton, FL, 115–158. https://doi.org/10.1201/9780203489260.ch5.

  68. Liu, S., Cheng, Y., Zhang, X., Guan, Q., Nishiuchi, S., Hase, K., & Takano, T. (2007). Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Molecular Biology, 64(1–2), 49–58. https://doi.org/10.1007/s11103-007-9133-3.

    Article  CAS  PubMed  Google Scholar 

  69. Moons, A., Valcke, R., & Van Montagu, M. (1998). Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant Journal, 15(1), 89–98. https://doi.org/10.1046/j.1365-313X.1998.00185.x.

    Article  CAS  PubMed  Google Scholar 

  70. Henry, R. J., Rice, N., Waters, D. L. E., Kasem, S., Ishikawa, R., Hao, Y., Dillon, S., Crayn, D., Wing, R., & Vaughan, D. (2010). Australian Oryza: Utility and conservation. Rice, 3(4), 235–241. https://doi.org/10.1007/s12284-009-9034-y.

    Article  Google Scholar 

  71. Wang, L., Czedik-Eysenberg, A., Mertz, R. A., Si, Y., Tohge, T., Nunes-Nesi, A., Arrivault, S., Dedow, L. K., Bryant, D. W., Zhou, W., Xu, J., Weissmann, S., Studer, A., Li, P., Zhang, C., LaRue, T., Shao, Y., Ding, Z., Sun, Q., Patel, R. V., Turgeon, R., Zhu, X., Provart, N. J., Mockler, T. C., Fernie, A. R., Stitt, M., Liu, P., & Brutnell, T. P. (2014). Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nature Biotechnology, 32(11), 1158–1165. https://doi.org/10.1038/nbt.3019.

    Article  CAS  PubMed  Google Scholar 

  72. Reyna-Llorens, I., Burgess, S. J., Reeves, G., Singh, P., Stevenson, S. R., Williams, B. P., Stanley, S., & Hibberd, J. M. (2018). Ancient duons may underpin spatial patterning of gene expression in C4 leaves. Proceedings of the National Academy of Sciences, 115(8), 1931–1936. https://doi.org/10.1073/pnas.1720576115.

    Article  CAS  Google Scholar 

  73. Heimann, L., Horst, I., Perduns, R., Dreesen, B., Offermann, S., & Peterhansel, C. (2013). A common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica. Plant Physiology, 162(1), 456–469. https://doi.org/10.1104/pp.113.216721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reeves, G., Grangé-Guermente, M. J., & Hibberd, J. M. (2017). Regulatory gateways for cell-specific gene expression in C4 leaves with Kranz anatomy. Journal of Experimental Botany, 68(2), 107–116. https://doi.org/10.1093/jxb/erw438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Council of Agricultural Research (ICAR)-sponsored National Agricultural Innovation Project (NAIP) project. SKM gratefully acknowledges the Indian Agricultural Research Institute (IARI) for IARI-Junior Research Fellowship grant and Department of Science and Technology (DST), Government of India for DST-INSPIRE fellowship grant. The authors acknowledge National Phytotron Facility, IARI, for providing space for growing plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash C. Bansal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 47 kb)

ESM 2

(DOC 53 kb)

ESM 3

(DOCX 25 kb)

ESM 4

(DOCX 22 kb)

ESM 5

(PPTX 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusamy, S.K., Lenka, S.K., Katiyar, A. et al. Genome-Wide Identification and Analysis of Biotic and Abiotic Stress Regulation of C4 Photosynthetic Pathway Genes in Rice. Appl Biochem Biotechnol 187, 221–238 (2019). https://doi.org/10.1007/s12010-018-2809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2809-0

Keywords

Navigation