Advertisement

Recent Trends in the Fabrication of Starch Nanofibers: Electrospinning and Non-electrospinning Routes and Their Applications in Biotechnology

  • Roqia Ashraf
  • Hasham S. Sofi
  • Aijaz Malik
  • Mushtaq A. Beigh
  • Rabia Hamid
  • Faheem A. Sheikh
Article
  • 232 Downloads

Abstract

Electrospinning a versatile and the most preferred technique for the fabrication of nanofibers has revolutionized by opening unlimited avenues in biomedical fields. Presently, the simultaneous functionalization and/or post-modification of as-spun nanofibers with biomolecules has been explored, to serve the distinct goals in the aforementioned field. Starch is one of the most abundant biopolymers on the earth. Besides, being biocompatible and biodegradable in nature, it has unprecedented properties of gelatinization and retrogradation. Therefore, starch has been used in numerous ways for wide range of applications. Keeping these properties in consideration, the present article summarizes the recent expansion in the fabrication of the pristine/modified starch-based composite scaffolds by electrospinning along with their possible applications. Apart from electrospinning technique, this review will also provide the comprehensive information on various other techniques employed in the fabrication of the starch-based nanofibers. Furthermore, we conclude with the challenges to be overcome in the fabrication of nanofibers by the electrospinning technique and future prospects of starch-based fabricated scaffolds for exploration of its applications.

Keywords

Electrospinning Starch nanofibers Tissue-engineering Wound dressing Drug delivery 

Notes

Funding Information

This work was funded by DST Nano Mission sponsored project (SR/NM/NM-1038/2016) and Science and Engineering Research Board (SERB) research grants (ECR/2016/001429).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160.CrossRefGoogle Scholar
  2. 2.
    Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu, Z., & He, J. H. (2014). Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning. Thermal Science, 18(5), 1473–1475.CrossRefGoogle Scholar
  4. 4.
    Cárdenas, W., Gómez-Pachon, E. Y., Muñoz, E., & Vera-Graziano, R. (2016). Preparation of potato starch microfibers obtained by electro wet spinning. IOP Conference Series: Materials Science and Engineering, 138(1), 012001.CrossRefGoogle Scholar
  5. 5.
    Rezaei, A., Nasirpour, A., & Fathi, M. (2015). Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Comprehensive Reviews in Food Science and Food Safety, 14(3), 269–284.CrossRefGoogle Scholar
  6. 6.
    Pawar, H. A., Kamat, S. R., & Choudhary, P. D. (2015). An overview of natural polysaccharides as biological macromolecules: their chemical modifications and pharmaceutical applications. Biology and Medicine, 6(224), 2.Google Scholar
  7. 7.
    Lu, Y., Huang, J., Yu, G., Cardenas, R., Wei, S., Wujcik, E. K., & Guo, Z. (2016). Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(5), 654–677.PubMedGoogle Scholar
  8. 8.
    Prashanthini, L. K., & Kalyani, D. (2015). Preparation of scaffold using rice husk and starch for bone regeneration. International Journal for Research in Applied Science and Engineering Technology, 3(6), 598–603.Google Scholar
  9. 9.
    Hadisi, Z., Nourmohammadi, J., & Nassiri, S. M. (2018). The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. International Journal of Biological Macromolecules, 107(Pt B), 2008–2019.CrossRefPubMedGoogle Scholar
  10. 10.
    Woranuch, S., Pangon, A., Puagsuntia, K., Subjalearndee, N., & Intasanta, V. (2017). Starch-based and multi-purpose nanofibrous membrane for high efficiency nanofiltration. RSC Advances, 7(56), 35368–35375.CrossRefGoogle Scholar
  11. 11.
    Hemamalini, T., & Dev, V. R. G. (2017). Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules, 106, 712–718.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications. Journal of Controlled Release, 252, 95–107.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., & Park, W. H. (2009). Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 61(12), 1020–1032.CrossRefPubMedGoogle Scholar
  14. 14.
    Sridhar, R., Lakshminarayanan, R., Madhaiyan, K., Barathi, V. A., Lim, K. H. C., & Ramakrishna, S. (2015). Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chemical Society Reviews, 44(3), 790–814.CrossRefPubMedGoogle Scholar
  15. 15.
    Silva, I., Gurruchaga, M., Goni, I., Fernández-Gutiérrez, M., Vázquez, B., & Román, J. S. (2013). Scaffolds based on hydroxypropyl starch: processing, morphology, characterization, and biological behavior. Journal of Applied Polymer Science, 127(3), 1475–1484.CrossRefGoogle Scholar
  16. 16.
    Doi, S., Clark, J. H., Macquarrie, D. J., & Milkowski, K. (2002). New materials based on renewable resources: chemically modified expanded corn starches as catalysts for liquid phase organic reactions. Chemical Communications, 22, 2632–2633.CrossRefGoogle Scholar
  17. 17.
    Torres, F. G., Commeaux, S., & Troncoso, O. P. (2013). Starch-based biomaterials for wound-dressing applications. Starch-Stärke, 65(7–8), 543–551.CrossRefGoogle Scholar
  18. 18.
    Suortti, T., Gorenstein, M. V., & Roger, P. (1998). Determination of the molecular mass of amylose. Journal of Chromatography A, 828(1–2), 515–521.CrossRefGoogle Scholar
  19. 19.
    Xie, F., Pollet, E., Halley, P. J., & Avérous, L. (2013). Starch-based nano-biocomposites. Progress in Polymer Science, 38(10–11), 1590–1628.CrossRefGoogle Scholar
  20. 20.
    Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366–375.CrossRefGoogle Scholar
  21. 21.
    Wang, S., & Copeland, L. (2015). Effect of acid hydrolysis on starch structure and functionality: A review. Critical Reviews in Food Science and Nutrition, 55(8), 1081–1097.CrossRefPubMedGoogle Scholar
  22. 22.
    Hong, Y., Liu, G., & Gu, Z. (2016). Recent advances of starch-based excipients used in extended-release tablets: a review. Drug Delivery, 23(1), 12–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Donald, A. M. (1994). Physics of foodstuffs. Reports on Progress in Physics, 57(11), 1081–1135.CrossRefGoogle Scholar
  24. 24.
    Jane, J. J. M. S. (1995). Starch properties, modifications, and applications. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 32(4), 751–757.CrossRefGoogle Scholar
  25. 25.
    Dias, A. R. G., da Rosa Zavareze, E., Spier, F., de Castro, L. A. S., & Gutkoski, L. C. (2010). Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chemistry, 123(3), 711–719.CrossRefGoogle Scholar
  26. 26.
    Ottenhof, M. A., & Farhat, I. A. (2004). Starch retrogradation. Biotechnology and Genetic Engineering Reviews, 21(1), 215–228.CrossRefPubMedGoogle Scholar
  27. 27.
    Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226–1236.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang, H., Wang, W., Jiang, S., Jiang, S., Zhai, L., & Jiang, Q. (2011). Poly (vinyl alcohol)/oxidized starch fibres via electrospinning technique: fabrication and characterization. Iranian Polymer Journal, 20(7), 551–558.Google Scholar
  29. 29.
    Lancuški, A., Ammar, A. A., Avrahami, R., Vilensky, R., Vasilyev, G., & Zussman, E. (2017). Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydrate Polymers, 158, 68–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Jukola, H., Nikkola, L., Gomes, M. E., Reis, R. L., & Ashammakhi, N. (2008). Electrospun starch-polycaprolactone nanofiber-based constructs for tissue engineering. AIP Conf Proc, 973, 971–974.Google Scholar
  31. 31.
    Sunthornvarabhas, J., Chatakanonda, P., Piyachomkwan, K., & Sriroth, K. (2011). Electrospun polylactic acid and cassava starch fiber by conjugated solvent technique. Materials Letters, 65(6), 985–987.CrossRefGoogle Scholar
  32. 32.
    Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 16(14), 1151–1170.CrossRefGoogle Scholar
  33. 33.
    Qi, S., & Craig, D. (2016). Recent developments in micro-and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms. Advanced Drug Delivery Reviews, 100(5), 67–84.CrossRefPubMedGoogle Scholar
  34. 34.
    Sánchez, L. D., Brack, N., Postma, A., Pigram, P. J., & Meagher, L. (2016). Surface modification of electrospun fibres for biomedical applications: a focus on radical polymerization methods. Biomaterials, 106(11), 24–45.CrossRefGoogle Scholar
  35. 35.
    Beachley, V., & Wen, X. (2010). Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Progress in Polymer Science, 35(7), 868–892.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kong, L., & Ziegler, G. R. (2013). Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydrate Polymers, 92(2), 1416–1422.CrossRefPubMedGoogle Scholar
  37. 37.
    Koganti, N., Mitchell, J. R., Ibbett, R. N., & Foster, T. J. (2011). Solvent effects on starch dissolution and gelatinization. Biomacromolecules, 12(8), 2888–2893.CrossRefPubMedGoogle Scholar
  38. 38.
    Haghi, A. K., & Akbari, M. (2007). Trends in electrospinning of natural nanofibers. Physica Status Solidi A: Applications and Materials Science, 204(6), 1830–1834.CrossRefGoogle Scholar
  39. 39.
    Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q., & Wang, Q. (2015). Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials, 8(5), 2718–2734.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules, 37(2), 573–578.CrossRefGoogle Scholar
  41. 41.
    Balaji, A., Vellayappan, M. V., John, A. A., Subramanian, A. P., Jaganathan, S. K., Supriyanto, E., & Razak, S. I. A. (2015). An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers. RSC Advances, 5(71), 57984–58004.CrossRefGoogle Scholar
  42. 42.
    Megelski, S., Stephens, J. S., Bruce Chase, D., & Rabolt, J. F. (2002). Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456–8466.CrossRefGoogle Scholar
  43. 43.
    Drosou, C., Krokida, M., & Biliaderis, C. G. (2017). Composite pullulan-whey protein nanofibers made by electrospinning: impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids, 77, 726–735.CrossRefGoogle Scholar
  44. 44.
    Uyar, T., & Besenbacher, F. (2008). Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer, 49(24), 5336–5343.CrossRefGoogle Scholar
  45. 45.
    Liu, Y., He, J. H., Yu, J. Y., & Zeng, H. M. (2008). Controlling numbers and sizes of beads in electrospun nanofibers. Polymer International, 57(4), 632–636.CrossRefGoogle Scholar
  46. 46.
    Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., & Kuang, A. (2007). Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polymers for Advanced Technologies, 18(3), 180–183.CrossRefGoogle Scholar
  47. 47.
    Hekmati, A. H., Rashidi, A., Ghazisaeidi, R., & Drean, J. Y. (2013). Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs. Textile Research Journal, 83(14), 1452–1466.CrossRefGoogle Scholar
  48. 48.
    Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., ... & Ndesendo V. M. K. (2013). A review of the effect of processing variables on the fabrication of electro spun Nano fibers for drug delivery applications. Journal of Nanomaterials, 789289, 1–22.Google Scholar
  49. 49.
    De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357–1362.CrossRefGoogle Scholar
  50. 50.
    Hiemstra; Muetgeert. (1964). Process for the production of amylose articles by extrusion of aqueos sodium hydroxide solution thereof into concentrated aqueous ammonium sulphate solution. USA Patent, 2753014, 13–16.Google Scholar
  51. 51.
    Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering, 12(5), 1197–1211.CrossRefPubMedGoogle Scholar
  52. 52.
    Kong, L., & Ziegler, G. R. (2014). Fabrication of pure starch fibers by electrospinning. Food Hydrocolloids, 36, 20–25.CrossRefGoogle Scholar
  53. 53.
    Lancuški, A., Vasilyev, G., Putaux, J. L., & Zussman, E. (2015). Rheological properties and electrospinnability of high-amylose starch in formic acid. Biomacromolecules, 16(8), 2529–2536.CrossRefPubMedGoogle Scholar
  54. 54.
    Jaiturong, P., Sutjarittangtham, K., Eitssayeam, S., & Sirithunyalug, J. (2012). Preparation of glutinous rice starch nanofibers by electrospinning. Advanced Materials Research, 506, 230–233.CrossRefGoogle Scholar
  55. 55.
    Padron, S., Fuentes, A., Caruntu, D., & Lozano, K. (2013). Experimental study of nanofiber production through forcespinning. Journal of Applied Physics, 113(2), 024318.CrossRefGoogle Scholar
  56. 56.
    Amalorpava Mary, L., Senthilram, T., Suganya, S., Nagarajan, L., Venugopal, J., Ramakrishna, S., & Giri Dev, V. R. (2012). Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle. Express Polymer Letters, 7(3), 238–248.CrossRefGoogle Scholar
  57. 57.
    Li, X., Chen, H., & Yang, B. (2016). Centrifugally spun starch-based fibers from amylopectin rich starches. Carbohydrate Polymers, 137, 459–465.CrossRefPubMedGoogle Scholar
  58. 58.
    Hermansson, A. M., & Svegmark, K. (1996). Developments in the understanding of starch functionality. Trends in Food Science & Technology, 7(11), 345–353.CrossRefGoogle Scholar
  59. 59.
    Xu, W., Yang, W., & Yang, Y. (2009). Electrospun starch acetate nanofibers: development, properties, and potential application in drug delivery. Biotechnology Progress, 25(6), 1788–1795.PubMedGoogle Scholar
  60. 60.
    Wang, H. J., Jin, X., Wang, W. Y., Xiao, C. F., & Tong, L. (2012). Preparation and electrospinning of acidified-oxidized potato starch. Advanced Materials Research, 535, 2340–2344.CrossRefGoogle Scholar
  61. 61.
    Oktay, B., Baştürk, E., Kayaman-Apohan, N., & Kahraman, M. V. (2013). Highly porous starch/poly (ethylene-alt-maleic anhydride) composite nanofiber mesh. Polymer Composites, 34(8), 1321–1324.CrossRefGoogle Scholar
  62. 62.
    Tuzlakoglu, K., Bolgen, N., Salgado, A. J., Gomes, M. E., Piskin, E., & Reis, R. L. (2005). Nano-and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 16(12), 1099–1104.PubMedGoogle Scholar
  63. 63.
    Tuzlakoglu, K., Pashkuleva, I., Rodrigues, M. T., Gomes, M. E., Van Lenthe, G. H., Müller, R., & Reis, R. L. (2010). A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. Journal of Biomedical Materials Research Part A, 92((1), 369–377.CrossRefGoogle Scholar
  64. 64.
    Komur, B., Bayrak, F., Ekren, N., Eroglu, M. S., Oktar, F. N., Sinirlioglu, Z. A., ... & Gunduz, O. (2017). Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. Biomedical Engineering Online, 16(1), 40.Google Scholar
  65. 65.
    Tang, S., Zhao, Z., Chen, G., Su, Y., Lu, L., Li, B., et al. (2016). Fabrication of ampicillin/starch/polymer composite nanofibers with controlled drug release properties by electrospinning. Journal of Sol-Gel Science and Technology, 77(3), 594–603.CrossRefGoogle Scholar
  66. 66.
    Zhang, H. B., Zhu, M., & You, R. Q. (2011). Modified biopolymer scaffolds by co-axial electrospinning. Advanced Materials Research, 160, 1062–1066.CrossRefGoogle Scholar
  67. 67.
    Milašius, R. (2010). Investigation of the possibility of forming nanofibres with potato starch. Fibres & Textiles in Eastern Europe, 18(5), 82.Google Scholar
  68. 68.
    Sukyte, J., Adomaviciute, E., Milasius, R., Bendoraitiene, J., & Danilovas, P. P. (2012). Formation of poly (vinyl alcohol)/cationic starch blend nanofibres via the electrospinning technique: the influence of different factors. Fibres & Textiles in Eastern Europe, 3(92), 16–20.Google Scholar
  69. 69.
    Woranuch, S., Pangon, A., Puagsuntia, K., Subjalearndee, N., & Intasanta, V. (2017). Rice flour-based nanostructures via a water-based system: transformation from powder to electrospun nanofibers under hydrogen-bonding induced viscosity, crystallinity and improved mechanical property. RSC Advances, 7(32), 19960–19966.CrossRefGoogle Scholar
  70. 70.
    Wadke, P., Chhabra, R., Jain, R., & Dandekar, P. (2017). Silver-embedded starch-based nanofibrous mats for soft tissue engineering. Surfaces and Interfaces, 8, 137–146.CrossRefGoogle Scholar
  71. 71.
    Jaiturong, P., Sirithunyalug, B., Eitsayeam, S., Asawahame, C., Tipduangta, P., & Sirithunyalug, J. (2017). Preparation of glutinous rice starch / polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian Journal of Pharmaceutical Sciences, 13(3), 239–247.CrossRefGoogle Scholar
  72. 72.
    Wu, D., Samanta, A., Srivastava, R. K., & Hakkarainen, M. (2017). Starch-derived nanographene oxide paves the way for electrospinnable and bioactive starch scaffolds for bone tissue engineering. Biomacromolecules, 18(5), 1582–1591.CrossRefPubMedGoogle Scholar
  73. 73.
    Yang, W., Sousa, A. M. M., Li, X., Tomasula, P. M., & Liu, L. (2017). Electrospinning of guar gum/corn starch blends. SOJ Materials Scince and Engineering, 5(1), 1–7.Google Scholar
  74. 74.
    Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217–1256.CrossRefGoogle Scholar
  75. 75.
    Gomes, M. E., Sikavitsas, V. I., Behravesh, E., Reis, R. L., & Mikos, A. G. (2003). Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research Part A, 67(1), 87–95.CrossRefPubMedGoogle Scholar
  76. 76.
    Gomes, M. E., Godinho, J. S., Tchalamov, D., Cunha, A. M., & Reis, R. L. (2002). Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Materials Science and Engineering: C, 20(1–2), 19–26.CrossRefGoogle Scholar
  77. 77.
    Martins, A., Chung, S., Pedro, A. J., Sousa, R. A., Marques, A. P., Reis, R. L., & Neves, N. M. (2009). Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 3(1), 37–42.CrossRefPubMedGoogle Scholar
  78. 78.
    Hutmacher, D. W., Sittinger, M., & Risbud, M. V. (2004). Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology, 22(7), 354–362.CrossRefPubMedGoogle Scholar
  79. 79.
    Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253.CrossRefGoogle Scholar
  80. 80.
    Cohn, D., & Hotovely-Salomon, A. (2005). Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties. Polymer, 46(7), 2068–2075.CrossRefGoogle Scholar
  81. 81.
    Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V., & Jayakumar, R. (2010). Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydrate Polymers, 80(2), 414–420.CrossRefGoogle Scholar
  82. 82.
    Cui, W., Zhu, X., Yang, Y., Li, X., & Jin, Y. (2009). Evaluation of electrospun fibrous scaffolds of poly(dl-lactide) and poly(ethylene glycol) for skin tissue engineering. Materials Science and Engineering C, 29(6), 1869–1876.CrossRefGoogle Scholar
  83. 83.
    Bret, U. D., Lakshmi, N. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 3(49), 832–864.Google Scholar
  84. 84.
    Sheikh, F. A., Ju, H. W., Moon, B. M., Lee, O. J., Kim, J. H., Park, H. J., ... & Park, C. H. (2016). Hybrid scaffolds based on PLGA and silk for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 10(3), 209–221.Google Scholar
  85. 85.
    Kenawy, E. R., Abdel-Hay, F. I., El-Newehy, M. H., & Wnek, G. E. (2007). Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Materials Science and Engineering A, 459(1–2), 390–396.CrossRefGoogle Scholar
  86. 86.
    Brough, C., Miller, D. A., Keen, J. M., Kucera, S. A., Lubda, D., & Williams, R. O. (2016). Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1). AAPS PharmSciTech, 17(1), 167–179.CrossRefPubMedGoogle Scholar
  87. 87.
    Sheikh, F. A., Barakat, N. A., Kanjwal, M. A., Park, S. J., Park, D. K., & Kim, H. Y. (2010). Synthesis of poly (vinyl alcohol)(PVA) nanofibers incorporating hydroxyapatite nanoparticles as future implant materials. Macromolecular Research, 18(1), 59–66.CrossRefGoogle Scholar
  88. 88.
    López de Dicastillo, C., Roa, K., Garrido, L., Pereira, A., & Galotto, M. J. (2017). Novel polyvinyl alcohol/starch electrospun fibers as a strategy to disperse cellulose nanocrystals into poly (lactic acid). Polymers, 9(4), 117.CrossRefGoogle Scholar
  89. 89.
    Ye, J., Hu, X., Luo, S., Liu, W., Chen, J., Zeng, Z., & Liu, C. (2017). Properties of starch after extrusion: a review. Starch-Stärke, 1–35.  https://doi.org/10.1002/star.201700110.
  90. 90.
    Yu, F., Prashantha, K., Soulestin, J., Lacrampe, M., & Krawczak, P. (2013). Plasticized-starch / poly ( ethylene oxide ) blends prepared by extrusion. Carbohydrate Polymers, 91(1), 253–261.CrossRefPubMedGoogle Scholar
  91. 91.
    Mahdieh, Z., Bagheri, R., Eslami, M., Amiri, M., Shokrgozar, M. A., & Mehrjoo, M. (2016). Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering. Materials Science and Engineering: C, 69, 301–310.CrossRefGoogle Scholar
  92. 92.
    Wang, P., Chen, F., Zhang, H., Meng, W., Sun, Y., & Liu, C. (2017). Large-scale preparation of jute fiber reinforced starch-based composites with high mechanical strength and optimized biodegradability. Starch-Stärke, 69(11–12) 1700052.CrossRefGoogle Scholar
  93. 93.
    Nasri-Nasrabadi, B., Mehrasa, M., Rafienia, M., Bonakdar, S., Behzad, T., & Gavanji, S. (2014). Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydrate Polymers, 108, 232–238.CrossRefPubMedGoogle Scholar
  94. 94.
    Susano, M. A., Leonor, I. B., Reis, R. L., & Azevedo, H. S. (2014). Elastic biodegradable starch/ethylene-co-vinyl alcohol fibre-mesh scaffolds for tissue engineering applications. Journal of Applied Polymer Science, 131(14), 40504.CrossRefGoogle Scholar
  95. 95.
    Hosseinzadeh, H., & Ramin, S. (2018). Fabrication of starch-graft-poly (acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution. International Journal of Biological Macromolecules, 106, 101–115.CrossRefPubMedGoogle Scholar
  96. 96.
    Patil, N.V., Rahman, M.M., Netravali, A.N., 2017. “Green” composites using bioresins from agro-wastes and modified sisal fibers. Polymer Composites.  https://doi.org/10.1002/pc.24607.
  97. 97.
    Meneguin, A. B., Cury, B. S. F., & Evangelista, R. C. (2014). Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydrate Polymers, 99, 140–149.CrossRefPubMedGoogle Scholar
  98. 98.
    Li, X., Hou, T., Lu, Y., & Yang, B. (2018). A method for controlling the surface morphology of centrifugally spun starch-based fibers. Journal of Applied Polymer Science, 135(6), 1–7.Google Scholar
  99. 99.
    Sowmya, S., Bumgardener, J. D., Chennazhi, K. P., Nair, S. V., & Jayakumar, R. (2013). Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 38(10–11), 1748–1772.CrossRefGoogle Scholar
  100. 100.
    Khan, F., Tanaka, M., & Ahmad, S. R. (2015). Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 3(42), 8224–8249.CrossRefGoogle Scholar
  101. 101.
    Sheikh, F. A., Ju, H. W., Lee, J. M., Moon, B. M., Park, H. J., Lee, O. J., … Park, C. H. (2015). 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(3), 681–691.Google Scholar
  102. 102.
    O’Shea, T. M., Wollenberg, A. L., Bernstein, A. M., Sarte, D. B., Deming, T. J., & Sofroniew, M. V. (2017). Smart materials for central nervous system cell delivery and tissue engineering. In: Smart materials for tissue engineering (Vol 1, Chapter 19, pp. 529–557).  https://doi.org/10.1039/9781788010542-00529.
  103. 103.
    Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16(6), 229–241.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Khorshidi, S., Solouk, A., Mirzadeh, H., Mazinani, S., Lagaron, J. M., Sharifi, S., & Ramakrishna, S. (2016). A review of key challenges of electrospun scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 10(9), 715–738.CrossRefPubMedGoogle Scholar
  105. 105.
    Ma, J., He, X., & Jabbari, E. (2011). Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly (L-lactide) nanofibers. Annals of Biomedical Engineering, 39(1), 14–25.CrossRefPubMedGoogle Scholar
  106. 106.
    Elvira, C., Mano, J. F., San Roman, J., & Reis, R. L. (2002). Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 23(9), 1955–1966.CrossRefPubMedGoogle Scholar
  107. 107.
    Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. Journal of Food Engineering, 214, 245–256.CrossRefGoogle Scholar
  108. 108.
    Stoppel, W. L., Ghezzi, C. E., McNamara, S. L., Black III, L. D., & Kaplan, D. L. (2015). Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Annals of Biomedical Engineering, 43(3), 657–680.CrossRefPubMedGoogle Scholar
  109. 109.
    Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873.CrossRefGoogle Scholar
  110. 110.
    Park, S., Lih, E., Park, K., Ki, Y., & Keun, D. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77–105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NanotechnologyUniversity of KashmirSrinagarIndia
  2. 2.Center of Data Mining and Biomedical Informatics, Faculty of Medical technologyMahidol UniversitySalayaThailand
  3. 3.Department of BiochemistryUniversity of KashmirSrinagarIndia

Personalised recommendations