Skip to main content
Log in

Penicillium purpurogenum Produces a Set of Endoxylanases: Identification, Heterologous Expression, and Characterization of a Fourth Xylanase, XynD, a Novel Enzyme Belonging to Glycoside Hydrolase Family 10

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fungus Penicillium purpurogenum grows on a variety of natural carbon sources and secretes a large number of enzymes which degrade the polysaccharides present in lignocellulose. In this work, the gene coding for a novel endoxylanase has been identified in the genome of the fungus. This gene (xynd) possesses four introns. The cDNA has been expressed in Pichia pastoris and characterized. The enzyme, XynD, belongs to family 10 of the glycoside hydrolases. Mature XynD has a calculated molecular weight of 40,997. It consists of 387 amino acid residues with an N-terminal catalytic module, a linker rich in ser and thr residues, and a C-terminal family 1 carbohydrate-binding module. XynD shows the highest identity (97%) to a putative endoxylanase from Penicillium subrubescens but its highest identity to a biochemically characterized xylanase (XYND from Penicillium funiculosum) is only 68%. The enzyme has a temperature optimum of 60 °C, and it is highly stable in its pH optimum range of 6.5–8.5. XynD is the fourth biochemically characterized endoxylanase from P. purpurogenum, confirming the rich potential of this fungus for lignocellulose biodegradation. XynD, due to its wide pH optimum and stability, may be a useful enzyme in biotechnological procedures related to this biodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kabel, M. A., van den Borne, H., Vincken, J.-P., Voragen, A. G. J., & Schols, H. A. (2007). Structural differences of xylans affect their interaction with cellulose. Carbohydrate Polymers, 69(1), 94–105.

    Article  CAS  Google Scholar 

  2. Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17(1), 39–67.

    Article  CAS  PubMed  Google Scholar 

  3. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37(Database), D233–D238.

    Article  CAS  PubMed  Google Scholar 

  4. Collins, T. C., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiological Reviews, 29(1), 3–23.

    Article  CAS  Google Scholar 

  5. Chávez, R., Schachter, K., Navarro, C., Peirano, A., Aguirre, C., Bull, P., & Eyzaguirre, J. (2002). Differences in expression of two endoxylanase genes (xynA and xynB) from Penicillium purpurogenum. Gene, 293(1-2), 161–168.

    Article  PubMed  Google Scholar 

  6. Belancic, A., Scarpa, J., Peirano, A., Díaz, R., Steiner, J., & Eyzaguirre, J. (1995). Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. Journal of Biotechnology, 41(1), 71–79.

    Article  CAS  PubMed  Google Scholar 

  7. Mardones, W., Di Genova, A., Cortés, M. P., Travisany, D., Maas, A., & Eyzaguirre, J. (2018). The genome sequence of the soft-rot fungus Penicillium purpurogenum reveals a high gene dosage for lignocellulolytic enzymes. Mycology: An International Journal of Fungal Biology, 9(1), 59–69.

    Article  CAS  Google Scholar 

  8. Hidalgo, M., Steiner, J., & Eyzaguirre, J. (1992). Beta-glucosidase from Penicillium purpurogenum: purification and properties. Biotechnology and Applied Biochemistry, 15(2), 185–191.

    CAS  PubMed  Google Scholar 

  9. Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40(W1), W445–W451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zavaleta, V., & Eyzaguirre, J. (2016). Penicillium purpurogenum produces a highly stable endo-β-(1,4)-galactanase. Applied Biochemistry and Biotechnology, 180(7), 1313–1327.

    Article  CAS  PubMed  Google Scholar 

  11. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  12. Furniss, C. S. M., Williamson, G., & Kroon, P. A. (2005). The substrate specificity and susceptibility to wheat inhibitor proteins of Penicillium funiculosum xylanases from a commercial enzyme preparation. Journal of the Science of Food and Agriculture, 85(4), 574–582.

    Article  CAS  Google Scholar 

  13. Dimarogona, M., Topakas, E., Christakopoulos, P., & Chrysina, E. D. (2012). The structure of a GH10 xylanase from Fusarium oxysporum reveals the presence of an extended loop on top of the catalytic cleft. Acta Crystallographica Section D, Biological Crystallography, 68(7), 735–742.

    Article  CAS  PubMed  Google Scholar 

  14. Kupfer, D. M., Drabenstot, S. D., Buchanan, K. L., Lai, H., Zhu, H., Dyer, D. W., Roe, B. A., & Murphy, J. W. (2004). Introns and splicing elements of five diverse fungi. Eukaryotic Cell, 3(5), 1088–1100.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yin, X., Gong, Y.-Y., Wang, J.-Q., Tang, C.-D., & Wu, M.-C. (2013). Cloning and expression of a family 10 xylanase gene (Aoxyn10) from Aspergillus oryzae in Pichia pastoris. Journal of General and Applied Microbiology, 59(6), 405–415.

    Article  CAS  PubMed  Google Scholar 

  16. Kishishita, S., Yoshimi, M., Fujii, T., Taylor II, L. E., Decker, S. R., Ishikawa, K., & Inoue, H. (2014). Cellulose-inducible xylanase Xyl10A from Acremonium cellulolyticus: purification, cloning and homologous expression. Protein Expression and Purification, 94, 40–45.

    Article  CAS  PubMed  Google Scholar 

  17. Fan, G., Yang, S., Yan, Q., Guo, Y., Li, Y., & Jiang, Z. (2014). Characterization of a highly thermostable glycoside hydrolase family10 xylanase from Malbranchea cinnamomea. International Journal of Biological Macromolecules, 70, 482–489.

    Article  CAS  PubMed  Google Scholar 

  18. Biely, P., Vrsanska, M., Tenkanen, M., & Kluepfel, D. (1997). Endo-β-1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, 57(1-3), 151–166.

    Article  CAS  PubMed  Google Scholar 

  19. Ribeiro, L. F. C., De Lucas, R. C., Vitcosque, G. L., Ribeiro, L. F., Ward, R. J., Rubio, M. V., Damásio, A. R. L., Squina, F. M., Gregory, R. C., Walton, P. H., Jorge, J. A., Prade, R. A., Buckeridge, M. S., & Polizeli, M. d. L. T. M. (2014). A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnology for Biofuels, 7(1), 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported by grants from FONDECYT (1130180) and Universidad Andrés Bello (DI-478-14/R and DI-31-12/R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Eyzaguirre.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Fig. S1

(DOCX 236 kb)

Fig. S2

(DOCX 19 kb)

Fig. S3

(DOCX 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverría, V., Eyzaguirre, J. Penicillium purpurogenum Produces a Set of Endoxylanases: Identification, Heterologous Expression, and Characterization of a Fourth Xylanase, XynD, a Novel Enzyme Belonging to Glycoside Hydrolase Family 10. Appl Biochem Biotechnol 187, 298–309 (2019). https://doi.org/10.1007/s12010-018-2782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2782-7

Keywords

Navigation