Skip to main content

Advertisement

Log in

Valorization of the Crude Glycerol for Propionic Acid Production Using an Anaerobic Fluidized Bed Reactor with Grounded Tires as Support Material

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the propionic acid (HPr) production from crude glycerol (CG) (5000 mg L−1) in an anaerobic fluidized bed reactor (AFBR). Grounded tire particles (2.8–3.35 mm) were used as support material for microbial adhesion. The reactor was operated with hydraulic retention times (HRT) varying from 8 to 0.5 h under mesophilic (30 °C) conditions. The HPr was the main metabolite produced, increasing in composition from 66.5 to 99.6% by decreasing the HRT from 8 to 0.5 h. Other metabolic products were 1,3-propanediol, with a maximum of 29.4% with an HRT of 6 h, ethanol, acetic, and butyric acids. The decrease in HRT from 8 to 0.5 h decreased the HPr yield, with a maximum of 0.48 ± 0.06 g HPr g COD−1 and an HRT of 6 h, and favored HPr productivity, with a maximum of 4.09 ± 1.24 g L−1 h−1 and HRT of 0.5 h. In the biogas, the H2 content increased from 12.5 to 81.2% by decreasing the HRT from 8 to 0.5 h. These results indicate the potential application of the AFBR for HPr production using an immobilized mixed culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sorate, K. A., & Bhale, P. V. (2015). Biodiesel properties and automotive system compatibility issues. Renewable & Sustainable Energy Reviews, 41, 777–798.

    Article  CAS  Google Scholar 

  2. ANP-National Agency of Oil, Natural Gas and Biofuels (Brazil). (2016) Brazilian Statistical Yearbook of Oil, Natural Gas and Biofuels, 1st ed National Agency of Oil, Natural gas and biofuels, Rio de Janeiro, Brazil (in Portuguese).

  3. da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industry microbiology. Biotechnology Advances, 27(1), 30–39.

    Article  CAS  PubMed  Google Scholar 

  4. Amaral, P. F. F., Ferreira, T. F., Fontes, G. C., & Coelho, M. A. Z. (2009). Glycerol valorization: new biotechnological routes. Food and Bioproducts Processin, 87(3), 179–186.

    Article  CAS  Google Scholar 

  5. Boyaval, P., & Corre, C. (1995). Production of propionic acid. Le Lait, 75(4-5), 453–461.

    Article  CAS  Google Scholar 

  6. Ahmadi, N., Khosravi-Darani, K., & Mortazavian, A. M. (2017). An overview of biotechnological production of propionic acid: from upstream to downstream processes. Electronic Journal of Biotechnology, 28, 67–75.

    Article  CAS  Google Scholar 

  7. Barbirato, F., Chedaille, D., & Bories, A. (1997). Propionic acid fermentation from glycerol comparison with conventional substrates. Applied Microbiology and Biotechnology, 47(4), 441–446.

    Article  CAS  Google Scholar 

  8. Liu, Y., Zhang, Y. G., Zhang, R. B., Zhang, F., & Zhu, J. (2011). Glycerol/glucose co-fermentation: On more proficient process to produce propionic acid by Propionibacterium acidipropionici. Current Microbiology, 62(1), 152–158.

    Article  CAS  PubMed  Google Scholar 

  9. Dishisha, T., Alvarez, M. T., & Hatti-Kaul, R. (2012). Batch- and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresource Technology, 118, 553–562.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Z., & Yang, S. T. (2013). Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp shermanii. Bioresource Technology, 137, 116–123.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Z., Jin, Y., & Yang, S. T. (2015). High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici. Biotechnology and Bioengeneering, 112(3), 502–511.

    Article  CAS  Google Scholar 

  12. Zhang, Z. P., Tay, J. H., Show, K. Y., Yan, R., Liang, D. T., Lee, D. J., & Jiang, W. J. (2007). Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 32(2), 185–191.

    Article  CAS  Google Scholar 

  13. Amorim, E. L. C., Barros, A. R., Damianovic, M. H. R. Z., & Silva, E. L. (2009). Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. International Journal of Hydrogen Energy, 34, 783–790.

    Article  CAS  Google Scholar 

  14. Barros, A. R., Adorno, M. A. T., Sakamoto, I. K., Maintinguer, S. I., Varesche, M. B. A., & Silva, E. L. (2011). Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Bioresource Technology, 102(4), 3840–3847.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, S., Han, S., & Shin, H. (2006). Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry, 41(1), 199–207.

    Article  CAS  Google Scholar 

  16. Walker, M., Zhang, Y., Heaven, S., & Banks, C. (2009). Potential errors in the quantitative evaluation of biogas production in anaerobic digestion process. Bioresource Technology, 100, 116–123.

    Google Scholar 

  17. Penteado, E. D., Lazaro, C. Z., Sakamoto, I. K., & Zaiat, M. (2013). Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. International Journal of Hydrogen Energy, 38(14), 6137–6145.

    Article  CAS  Google Scholar 

  18. Bondiolli, P., & Della Bella, L. (2005). An alternative spectrophotometric method for the determination of free glycerol in biodiesel. European Journal of Lipid Science and Technology, 107(3), 153–157.

    Article  CAS  Google Scholar 

  19. American Public Health Association. (2012). Standard methods for the examination for water and wastewater (22nd ed.). Washington: American Water Works Association, Water Environmental Federation.

    Google Scholar 

  20. van Haandel, A. and van der Lubbe, J. (2011) Handbook biological wastewater treatment: design and optimization of activated sludge systems. 1. ed. Leidschendam: Quist, Netherlands.

  21. Gonen, C., Gungormusler, M., & Azbar, N. (2012). Comparative evaluation of pumice stone as an alternative immobilization material for 1,3-propanodiol production from waste glycerol by immobilized Klebsiella pneumonia. Applied Biochemistry and Biotechnology, 168(8), 2136–2147.

    Article  CAS  PubMed  Google Scholar 

  22. Gungormusler, M., Gonen, C., & Azbar, N. (2013). Effect of cell immobilization on the production of 1,3-propanediol. New Biotechnology, 30(6), 623–628.

    Article  CAS  PubMed  Google Scholar 

  23. Chookaew, T., O-Thong, S., & Prasertsan, P. (2014). Biohydrogen production from crude glycerol by immobilized by Klebsiella sp TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. International Journal of Hydrogen Energy, 39(18), 9580–9587.

    Article  CAS  Google Scholar 

  24. Gallardo, R., Faria, C., Rodrigues, L. R., Pereira, M. A., & Alves, M. M. (2014). Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresource Technology, 155, 28–33.

    Article  CAS  PubMed  Google Scholar 

  25. Biebl, H., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology, 52(3), 289–297.

    Article  CAS  PubMed  Google Scholar 

  26. Playne, M. J. (1985). Propionic and butyric acids. In M. Moon-Young (Ed.), Comprehensive biotechnology (pp. 731–759). New York: Pergamon Press.

    Google Scholar 

  27. Coral, J., Karp, S. G., Vandenberghe, L. P. S., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Applied Microbiology and Biotechnology, 151, 333–341.

    CAS  Google Scholar 

  28. Himmi, E. H., Bories, A., Boussaid, A., & Hassani, L. (2000). Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp Shermanii. Applied Microbiology and Biotechnology, 53(4), 435–440.

    Article  CAS  PubMed  Google Scholar 

  29. Emmanuel, B. (1978). The relative contribution of propionate, and long chain even-numbered fatty acids to the production of long chain odd-numbered fatty acids in rumen bacteria. Biochimica et Biophysica Acta, 528(2), 239–246.

    Article  CAS  PubMed  Google Scholar 

  30. Selembo, P. A., Perez, J. M., Loyd, W. A., & Logan, B. E. (2009). Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnology and Bioengeneering, 104(6), 1098–1106.

    Article  CAS  Google Scholar 

  31. Lo, Y. C., Chen, J. X., Huang, C. Y., Yuan, Y. J., & Chang, J. S. (2013). Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. International Journal of Hydrogen Energy, 38(35), 15815–15822.

    Article  CAS  Google Scholar 

  32. Hanaki, K., Matsuo, T., & Nagase, M. (1981). Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnology and Bioengeneering, 23(7), 1591–1610.

    Article  CAS  Google Scholar 

  33. Jeris, J. S., & Mccarty, P. L. (1965). The biochemistry of methane fermentation using C14 tracers. Journal of the Water Pollution Control Federation, 37, 178–192.

    CAS  Google Scholar 

  34. Novak, J. T., & Carlson, D. A. (1970). The kinetics of anaerobic long-chain fatty acids degradation. Journal of the Water Pollution Control Federation, 42, 1932–1943.

    CAS  Google Scholar 

  35. Demeyer, D. I., & Henderickx, H. K. (1966). The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochimica et Biophysica Acta, 137, 484–497.

    Article  Google Scholar 

  36. Kósmider, A., Drozdzynska, A., Blaszka, K., Leja, K., & Czaczyk, K. (2010). Propionic acid production by Propionibacterium freudenreichii ssp Shermanii using industrial wastes: crude glycerol and whey lactose. Polish Journal of Environmental Studies, 19, 1249–1253.

    Google Scholar 

  37. Dishisha, T., Ibrahim, M. H. A., Cavero, V. H., Alvarez, M. T., & Hatti-Kaul, R. (2015). Improved propionic acid production from glycerol: Combining cyclic batch- and sequential batch fermentations with optimal nutrient composition. Bioresource Technology, 176, 80–87.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, A., & Yang, S. T. (2009). Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochemistry, 44, 239–259.

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of FAPEAM (Amazonas Research Foundation), CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Council for Scientific and Technological Development), and FAPESP (São Paulo Research Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazareth, T.C., de Oliveira Paranhos, A.G., Ramos, L.R. et al. Valorization of the Crude Glycerol for Propionic Acid Production Using an Anaerobic Fluidized Bed Reactor with Grounded Tires as Support Material. Appl Biochem Biotechnol 186, 400–413 (2018). https://doi.org/10.1007/s12010-018-2754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2754-y

Keywords

Navigation