Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 2, pp 400–413 | Cite as

Valorization of the Crude Glycerol for Propionic Acid Production Using an Anaerobic Fluidized Bed Reactor with Grounded Tires as Support Material

  • Talita Corrêa Nazareth
  • Aline Gomes de Oliveira Paranhos
  • Lucas Rodrigues Ramos
  • Edson Luiz Silva
Article

Abstract

This study evaluated the propionic acid (HPr) production from crude glycerol (CG) (5000 mg L−1) in an anaerobic fluidized bed reactor (AFBR). Grounded tire particles (2.8–3.35 mm) were used as support material for microbial adhesion. The reactor was operated with hydraulic retention times (HRT) varying from 8 to 0.5 h under mesophilic (30 °C) conditions. The HPr was the main metabolite produced, increasing in composition from 66.5 to 99.6% by decreasing the HRT from 8 to 0.5 h. Other metabolic products were 1,3-propanediol, with a maximum of 29.4% with an HRT of 6 h, ethanol, acetic, and butyric acids. The decrease in HRT from 8 to 0.5 h decreased the HPr yield, with a maximum of 0.48 ± 0.06 g HPr g COD−1 and an HRT of 6 h, and favored HPr productivity, with a maximum of 4.09 ± 1.24 g L−1 h−1 and HRT of 0.5 h. In the biogas, the H2 content increased from 12.5 to 81.2% by decreasing the HRT from 8 to 0.5 h. These results indicate the potential application of the AFBR for HPr production using an immobilized mixed culture.

Keywords

Fermentation Hydraulic retention time Organic acids Propionic acid productivity Propionic acid yield 

Notes

Funding Information

The authors gratefully acknowledge the financial support of FAPEAM (Amazonas Research Foundation), CAPES (Coordination for the Improvement of Higher Education Personnel), CNPq (National Council for Scientific and Technological Development), and FAPESP (São Paulo Research Foundation).

References

  1. 1.
    Sorate, K. A., & Bhale, P. V. (2015). Biodiesel properties and automotive system compatibility issues. Renewable & Sustainable Energy Reviews, 41, 777–798.CrossRefGoogle Scholar
  2. 2.
    ANP-National Agency of Oil, Natural Gas and Biofuels (Brazil). (2016) Brazilian Statistical Yearbook of Oil, Natural Gas and Biofuels, 1st ed National Agency of Oil, Natural gas and biofuels, Rio de Janeiro, Brazil (in Portuguese).Google Scholar
  3. 3.
    da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industry microbiology. Biotechnology Advances, 27(1), 30–39.CrossRefGoogle Scholar
  4. 4.
    Amaral, P. F. F., Ferreira, T. F., Fontes, G. C., & Coelho, M. A. Z. (2009). Glycerol valorization: new biotechnological routes. Food and Bioproducts Processin, 87(3), 179–186.CrossRefGoogle Scholar
  5. 5.
    Boyaval, P., & Corre, C. (1995). Production of propionic acid. Le Lait, 75(4-5), 453–461.CrossRefGoogle Scholar
  6. 6.
    Ahmadi, N., Khosravi-Darani, K., & Mortazavian, A. M. (2017). An overview of biotechnological production of propionic acid: from upstream to downstream processes. Electronic Journal of Biotechnology, 28, 67–75.CrossRefGoogle Scholar
  7. 7.
    Barbirato, F., Chedaille, D., & Bories, A. (1997). Propionic acid fermentation from glycerol comparison with conventional substrates. Applied Microbiology and Biotechnology, 47(4), 441–446.CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Zhang, Y. G., Zhang, R. B., Zhang, F., & Zhu, J. (2011). Glycerol/glucose co-fermentation: On more proficient process to produce propionic acid by Propionibacterium acidipropionici. Current Microbiology, 62(1), 152–158.CrossRefGoogle Scholar
  9. 9.
    Dishisha, T., Alvarez, M. T., & Hatti-Kaul, R. (2012). Batch- and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresource Technology, 118, 553–562.CrossRefGoogle Scholar
  10. 10.
    Wang, Z., & Yang, S. T. (2013). Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp shermanii. Bioresource Technology, 137, 116–123.CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Jin, Y., & Yang, S. T. (2015). High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici. Biotechnology and Bioengeneering, 112(3), 502–511.CrossRefGoogle Scholar
  12. 12.
    Zhang, Z. P., Tay, J. H., Show, K. Y., Yan, R., Liang, D. T., Lee, D. J., & Jiang, W. J. (2007). Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 32(2), 185–191.CrossRefGoogle Scholar
  13. 13.
    Amorim, E. L. C., Barros, A. R., Damianovic, M. H. R. Z., & Silva, E. L. (2009). Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. International Journal of Hydrogen Energy, 34, 783–790.CrossRefGoogle Scholar
  14. 14.
    Barros, A. R., Adorno, M. A. T., Sakamoto, I. K., Maintinguer, S. I., Varesche, M. B. A., & Silva, E. L. (2011). Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production. Bioresource Technology, 102(4), 3840–3847.CrossRefGoogle Scholar
  15. 15.
    Kim, S., Han, S., & Shin, H. (2006). Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry, 41(1), 199–207.CrossRefGoogle Scholar
  16. 16.
    Walker, M., Zhang, Y., Heaven, S., & Banks, C. (2009). Potential errors in the quantitative evaluation of biogas production in anaerobic digestion process. Bioresource Technology, 100, 116–123.Google Scholar
  17. 17.
    Penteado, E. D., Lazaro, C. Z., Sakamoto, I. K., & Zaiat, M. (2013). Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. International Journal of Hydrogen Energy, 38(14), 6137–6145.CrossRefGoogle Scholar
  18. 18.
    Bondiolli, P., & Della Bella, L. (2005). An alternative spectrophotometric method for the determination of free glycerol in biodiesel. European Journal of Lipid Science and Technology, 107(3), 153–157.CrossRefGoogle Scholar
  19. 19.
    American Public Health Association. (2012). Standard methods for the examination for water and wastewater (22nd ed.). Washington: American Water Works Association, Water Environmental Federation.Google Scholar
  20. 20.
    van Haandel, A. and van der Lubbe, J. (2011) Handbook biological wastewater treatment: design and optimization of activated sludge systems. 1. ed. Leidschendam: Quist, Netherlands.Google Scholar
  21. 21.
    Gonen, C., Gungormusler, M., & Azbar, N. (2012). Comparative evaluation of pumice stone as an alternative immobilization material for 1,3-propanodiol production from waste glycerol by immobilized Klebsiella pneumonia. Applied Biochemistry and Biotechnology, 168(8), 2136–2147.CrossRefGoogle Scholar
  22. 22.
    Gungormusler, M., Gonen, C., & Azbar, N. (2013). Effect of cell immobilization on the production of 1,3-propanediol. New Biotechnology, 30(6), 623–628.CrossRefGoogle Scholar
  23. 23.
    Chookaew, T., O-Thong, S., & Prasertsan, P. (2014). Biohydrogen production from crude glycerol by immobilized by Klebsiella sp TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. International Journal of Hydrogen Energy, 39(18), 9580–9587.CrossRefGoogle Scholar
  24. 24.
    Gallardo, R., Faria, C., Rodrigues, L. R., Pereira, M. A., & Alves, M. M. (2014). Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresource Technology, 155, 28–33.CrossRefGoogle Scholar
  25. 25.
    Biebl, H., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology, 52(3), 289–297.CrossRefGoogle Scholar
  26. 26.
    Playne, M. J. (1985). Propionic and butyric acids. In M. Moon-Young (Ed.), Comprehensive biotechnology (pp. 731–759). New York: Pergamon Press.Google Scholar
  27. 27.
    Coral, J., Karp, S. G., Vandenberghe, L. P. S., Parada, J. L., Pandey, A., & Soccol, C. R. (2008). Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Applied Microbiology and Biotechnology, 151, 333–341.Google Scholar
  28. 28.
    Himmi, E. H., Bories, A., Boussaid, A., & Hassani, L. (2000). Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp Shermanii. Applied Microbiology and Biotechnology, 53(4), 435–440.CrossRefGoogle Scholar
  29. 29.
    Emmanuel, B. (1978). The relative contribution of propionate, and long chain even-numbered fatty acids to the production of long chain odd-numbered fatty acids in rumen bacteria. Biochimica et Biophysica Acta, 528(2), 239–246.CrossRefGoogle Scholar
  30. 30.
    Selembo, P. A., Perez, J. M., Loyd, W. A., & Logan, B. E. (2009). Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnology and Bioengeneering, 104(6), 1098–1106.CrossRefGoogle Scholar
  31. 31.
    Lo, Y. C., Chen, J. X., Huang, C. Y., Yuan, Y. J., & Chang, J. S. (2013). Dark fermentative hydrogen production with crude glycerol from biodiesel industry using indigenous hydrogen-producing bacteria. International Journal of Hydrogen Energy, 38(35), 15815–15822.CrossRefGoogle Scholar
  32. 32.
    Hanaki, K., Matsuo, T., & Nagase, M. (1981). Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnology and Bioengeneering, 23(7), 1591–1610.CrossRefGoogle Scholar
  33. 33.
    Jeris, J. S., & Mccarty, P. L. (1965). The biochemistry of methane fermentation using C14 tracers. Journal of the Water Pollution Control Federation, 37, 178–192.Google Scholar
  34. 34.
    Novak, J. T., & Carlson, D. A. (1970). The kinetics of anaerobic long-chain fatty acids degradation. Journal of the Water Pollution Control Federation, 42, 1932–1943.Google Scholar
  35. 35.
    Demeyer, D. I., & Henderickx, H. K. (1966). The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochimica et Biophysica Acta, 137, 484–497.CrossRefGoogle Scholar
  36. 36.
    Kósmider, A., Drozdzynska, A., Blaszka, K., Leja, K., & Czaczyk, K. (2010). Propionic acid production by Propionibacterium freudenreichii ssp Shermanii using industrial wastes: crude glycerol and whey lactose. Polish Journal of Environmental Studies, 19, 1249–1253.Google Scholar
  37. 37.
    Dishisha, T., Ibrahim, M. H. A., Cavero, V. H., Alvarez, M. T., & Hatti-Kaul, R. (2015). Improved propionic acid production from glycerol: Combining cyclic batch- and sequential batch fermentations with optimal nutrient composition. Bioresource Technology, 176, 80–87.CrossRefGoogle Scholar
  38. 38.
    Zhang, A., & Yang, S. T. (2009). Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochemistry, 44, 239–259.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Talita Corrêa Nazareth
    • 1
  • Aline Gomes de Oliveira Paranhos
    • 1
  • Lucas Rodrigues Ramos
    • 1
  • Edson Luiz Silva
    • 1
  1. 1.Department of Chemical EngineeringFederal University of São CarlosSão CarlosBrazil

Personalised recommendations