Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 2, pp 414–424 | Cite as

Hydrothermal Carbonization of Microalgae (Chlorococcum sp.) for Porous Carbons With High Cr(VI) Adsorption Performance

  • Yuanyuan Sun
  • Chang Liu
  • Yifan Zan
  • Gai Miao
  • Hao Wang
  • Lingzhao Kong
Article
  • 94 Downloads

Abstract

Porous carbon adsorbents were prepared from microalgae (Chlorococcum sp.) via directly hydrothermal carbonization coupled with KOH or NH3 activation for Cr(VI) adsorption. KOH-activated porous carbons exhibit high Cr(VI) adsorption capacities than those obtained via NH3 modification (370.37 > 95.70 mg/g). The superior Cr(VI) adsorption capacity is due to high surface areas (1784 m2/g) and pore volumes of porous carbon with mesoporous and macroporous structures. The Cr(VI) adsorption result was well fitted to the Langmuir model, showing that the removal of Cr(VI) was attributed to the monolayer adsorption of activity site on carbon surface.

Keywords

Hydrothermal carbonization Porous carbons Microalgae (Chlorococcum sp.) Cr(VI) Adsorption 

Notes

Acknowledgements

Authors acknowledge financial supports provided by the National Natural Science Foundation of China (21406255), the Shanghai Science and Technology Committee (16dz1207200), and the Youth Innovation Promotion Association CAS (2015231).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Minami, E., & Saka, S. (2005). Biomass resources present in Japan—annual quantities grown, unused and wasted. Biomass and Bioenergy, 29(5), 310–320.CrossRefGoogle Scholar
  2. 2.
    Gupta, R. B., & Demirbas, A. (2010). Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. 3.
    Azar, C., Lindgren, K., Larson, E., & Möllersten, K. (2006). Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Climatic Change, 74(1-3), 47–79.CrossRefGoogle Scholar
  4. 4.
    Sevilla, M., Macia-Agullo, J. A., & Fuertes, A. B. (2011). Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass & Bioenergy, 35(7), 3152–3159.CrossRefGoogle Scholar
  5. 5.
    Liu, W. J., Zeng, F. X., Jiang, H., & Zhang, X. S. (2011). Preparation of high adsorption capacity bio-chars from waste biomass. Bioresource Technology, 102(17), 8247–8252.CrossRefGoogle Scholar
  6. 6.
    Libra, J. A., Ro, K. S., & Kammann, C. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 89–124.CrossRefGoogle Scholar
  7. 7.
    Sevilla, M., & Fuertes, A. B. (2009). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry, 15(16), 4195–4203.CrossRefGoogle Scholar
  8. 8.
    Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47(9), 2281–2289.CrossRefGoogle Scholar
  9. 9.
    Titirici, M. M., Thomas, A., & Antonietti, M. (2007). Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry, 31(6), 787–788.CrossRefGoogle Scholar
  10. 10.
    Kumar, S., Loganathan, V. A., Gupta, R. B., & Barnett, M. O. (2011). An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environment Management, 92(10), 2504–2512.CrossRefGoogle Scholar
  11. 11.
    Liu, Z. G., & Zhang, F. S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167(1–3), 933–939.CrossRefGoogle Scholar
  12. 12.
    Liu, Z. G., & Zhang, F. S. (2011). Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 267(1), 101–106.CrossRefGoogle Scholar
  13. 13.
    Kumar, S., Kothari, U., Lee, Y. Y., & Gupta, R. B. (2011). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass & Bioenergy, 35(2), 956–968.CrossRefGoogle Scholar
  14. 14.
    Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32–40.CrossRefGoogle Scholar
  15. 15.
    Cao, Y. H., Huang, J. N., Li, Y. H., Qiu, S., Liu, J. R., Khasanov, A., Khan, M. A., Young, D. P., Peng, F., Cao, D. P., Peng, X. F., Hong, K. L., & Guo, Z. H. (2016). One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. Carbon, 109, 640–649.CrossRefGoogle Scholar
  16. 16.
    Alaerts, G. J., Jitjaturunt, V., & Kelderman, P. (1989). Use of coconut shell-based activated carbon for chromium(VI) removal. Water Science Technology, 20, 1701–1704.CrossRefGoogle Scholar
  17. 17.
    Dantas, T. N., Neto, A. A. D., & Moura, M. C. (2001). Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Water Research, 35(9), 2219–2224.CrossRefGoogle Scholar
  18. 18.
    Liu, M., Zhang, H., Zhang, X., Deng, Y., Liu, W., & Zhan, H. (2001). Removal and recovery of chromium(III) from aqueous solutions by a spheroidal cellulose adsorbent. Water Environment Research, 73(3), 322–328.CrossRefGoogle Scholar
  19. 19.
    Lee, C. G., Lee, S., Park, J. A., Park, C., Lee, S. J., Kim, S. B., An, B., Yun, S. T., Lee, S. H., & Choi, J. W. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, 203–211.CrossRefGoogle Scholar
  20. 20.
    Monser, L., & Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Separation and Purification Technology, 26(2-3), 137–146.CrossRefGoogle Scholar
  21. 21.
    Singh, J., & Cu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable & Sustainable Energy Reviews, 14(9), 2596–2610.CrossRefGoogle Scholar
  22. 22.
    Demirbas, A., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1), 163–170.CrossRefGoogle Scholar
  23. 23.
    Wang, J. J., Tan, Z. C., Zhu, C. C., Miao, G., Kong, L. Z., & Sun, Y. H. (2016). One-pot catalytic conversion of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over the commercial H-ZSM-5 zeolite. Green Chemistry, 18(2), 452–460.CrossRefGoogle Scholar
  24. 24.
    Miao, G., Zhu, C. C., Wang, J. J., Tan, Z. C., Wang, L., Liu, J. L., Kong, L. Z., & Sun, Y. H. (2015). Efficient one-pot production of 1,2-propanediol and ethylene glycol from microalgae (Chlorococcum sp.) in water. Green Chemistry, 17(4), 2538–2544.CrossRefGoogle Scholar
  25. 25.
    Falco, C., Sevilla, M., White, R. J., Rothe, R., & Titirici, M. M. (2012). Renewable nitrogen-doped hydrothermal carbons derived from microalgae. ChemSusChem, 5(9), 1834–1840.CrossRefGoogle Scholar
  26. 26.
    Sevilla, M., Gu, W., Falco, C., Titirici, M. M., Fuertes, A. B., & Yushin, G. (2014). Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. Journal of Power Sources, 267, 26–32.CrossRefGoogle Scholar
  27. 27.
    Heilmann, S. M., Davis, H. T., Jader, L. R., Lefebvre, P. A., Sadowsky, M. J., Schendel, F. J., von Keitz, M. G., & Valentas, K. J. (2010). Hydrothermal carbonization of microalgae. Biomass & Bioenergy, 34(6), 875–882.CrossRefGoogle Scholar
  28. 28.
    Luo, H., Zhu, C. C., Tan, Z. C., Bao, L. W., Wang, J. J., Miao, G., Kong, L. Z., & Sun, Y. H. (2016). Preparation of N-doped activated carbons with high CO2 capture performance from microalgae (Chlorococcum sp.). RSC Advances, 6(45), 38724–38730.CrossRefGoogle Scholar
  29. 29.
    Baláž, M., Bujňáková, Z., Baláž, P., Zorkovska, A., Dankova, Z., & Briancin, J. (2015). Adsorption of cadmium(II) on waste biomaterial. Journal of Colloid Interface Science, 454, 121–133.CrossRefGoogle Scholar
  30. 30.
    Shang, J. G., Pi, J. C., Zong, M. Z., Wang, Y. R., Li, W. H., & Liao, Q. H. (2016). Chromium removal using magnetic biochar derived from herb-residue. Journal of the Taiwan Institute of Chemical Engineers., 68, 289–294.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Low-Carbon Conversion Science and EngineeringShanghai Advanced Research InstituteShanghaiChina
  2. 2.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina

Personalised recommendations