Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 547–562 | Cite as

Novel Naphthalimide Derivatives as Selective G-Quadruplex DNA Binders

  • Ufuk Yildiz
  • Burak CobanEmail author


A new derivate of 4-bromo-1,8-naphthalic anhydride and its quaternized analogue have been prepared and characterized. The interactions of both derivatives with human telomere quadruplex-DNA and ds-DNA have been comparatively studied by UV-visible (UV-Vis), fluorescent intercalator displacement assays, competition dialysis, circular dichroism (CD), agarose gel electrophoresis, and polyacrylamide gel electrophoresis. The results show that both derivatives can stabilize G-quadruplexes DNA, and they show different binding affinities for G-quadruplexes-DNA and ds-DNA. All spectroscopic studies have shown that the derivatives have a modest selectivity for G-quadruplex versus ds-DNA.


4-Bromo-1,8-naphthalic anhydride Quaternized Naphthalimide DNA binding G-Quadruplex DNA selectivity 



We are grateful for the support of Bulent Ecevit University with grant no. 2014-72118496-04.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2018_2749_MOESM1_ESM.docx (7 mb)
ESM 1 (DOCX 7212 kb)


  1. 1.
    Sen, D., & Gilbert, W. (1988). Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature, 334(6180), 364–366.CrossRefGoogle Scholar
  2. 2.
    Williamson, J. R., Raghuraman, M. K., & Cech, T. R. (1989). Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell, 59(5), 871–880.CrossRefGoogle Scholar
  3. 3.
    Henderson, E., Hardin, C. C., Walk, S. K., Tinoco, I., & Blackburn, E. H. (1987). Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine·guanine base pairs. Cell, 51(6), 899–908.CrossRefGoogle Scholar
  4. 4.
    Neidle, S., & Parkinson, G. (2002). Telomere maintenance as a target for anticancer drug discovery. Nature Reviews. Drug Discovery, 1(5), 383–393.CrossRefGoogle Scholar
  5. 5.
    Blackburn, E. H. (2001). Switching and signaling at the telomere. Cell, 106(6), 661–673.CrossRefGoogle Scholar
  6. 6.
    Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274), 458–460.CrossRefGoogle Scholar
  7. 7.
    Tian, X., Chen, B., & Liu, X. (2010). Telomere and telomerase as targets for cancer therapy. Applied Biochemistry and Biotechnology, 160(5), 1460–1472.CrossRefGoogle Scholar
  8. 8.
    Rhodes, D., & Lipps, H. J. (2015). G-quadruplexes and their regulatory roles in biology. Nucleic Acids Research, 43(18), 8627–8637.CrossRefGoogle Scholar
  9. 9.
    Dang, C. V. (2012). MYC on the path to cancer. Cell, 149(1), 22–35.CrossRefGoogle Scholar
  10. 10.
    Mikami-Terao, Y., Akiyama, M., Yuza, Y., Yanagisawa, T., Yamada, O., Kawano, T., Agawa, M., Ida, H., & Yamada, H. (2009). Antitumor activity of TMPyP4 interacting G-quadruplex in retinoblastoma cell lines. Experimental Eye Research, 89(2), 200–208.CrossRefGoogle Scholar
  11. 11.
    Mergny, J. L., & Helene, C. (1998). G-quadruplex DNA: a target for drug design. Nature Medicine, 4(12), 1366–1367.CrossRefGoogle Scholar
  12. 12.
    Guittat, L., De Cian, A., Rosu, F., Gabelica, V., De Pauw, E., Delfourne, E., & Mergny, J. L. (2005). Ascididemin and meridine stabilise G-quadruplexes and inhibit telomerase in vitro. Biochimica et Biophysica Acta-General Subjects, 1724(3), 375–384.CrossRefGoogle Scholar
  13. 13.
    Tauchi, T., Shin-ya, K., Sashida, G., Sumi, M., Okabe, S., Ohyashiki, J. H., & Ohyashiki, K. (2006). Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene, 25(42), 5719–5725.CrossRefGoogle Scholar
  14. 14.
    Phatak, P., Cookson, J. C., Dai, F., Smith, V., Gartenhaus, R. B., Stevens, M. F. G., & Burger, A. M. (2007). Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. British Journal of Cancer, 96(8), 1223–1233.CrossRefGoogle Scholar
  15. 15.
    Burger, A. M., Dai, F., Schultes, C. M., Reszka, A. P., Moore, M. J., Double, J. A., & Neidle, S. (2005). The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Research, 65(4), 1489–1496.CrossRefGoogle Scholar
  16. 16.
    Jiang, G. B., Xie, Y. Y., Lin, G. J., Huang, H. L., Liang, Z. H., & Liu, Y. J. (2013). Synthesis, characterization, DNA interaction, antioxidant and anticancer activity studies of ruthenium(II) polypyridyl complexes. Journal of Photochemistry and Photobiology. B, 12948–12956.Google Scholar
  17. 17.
    Shi, S., Huang, H.-L., Gao, X., Yao, J.-L., Lv, C.-Y., Zhao, J., Sun, W.-L., Yao, T.-M., & Ji, L.-N. (2013). A comparative study of the interaction of two structurally analogous ruthenium complexes with human telomeric G-quadruplex DNA. Journal of Inorganic Biochemistry, 12119–12127.Google Scholar
  18. 18.
    Yildiz U, Coban B (2016) A comparative DNA binding study for heteroleptic platinum(II) complexes of pip and hpip. Bulgarian Chemical Communications, 48(Special Issue C), 33–38.Google Scholar
  19. 19.
    Li, Q., Zhang, J., Yang, L., Yu, Q., Chen, Q., Qin, X., Le, F., Zhang, Q., & Liu, J. (2014). Stabilization of G-quadruplex DNA and inhibition of telomerase activity studies of ruthenium(II) complexes. Journal of Inorganic Biochemistry, 130122-129.Google Scholar
  20. 20.
    Bag, S. S., Pradhan, M. K., Kundu, R., & Jana, S. (2013). Highly solvatochromic fluorescent naphthalimides: design, synthesis, photophysical properties and fluorescence switch-on sensing of ct-DNA. Bioorganic & Medicinal Chemistry Letters, 23(1), 96–101.CrossRefGoogle Scholar
  21. 21.
    Wang, K., Wang, Y., Yan, X., Chen, H., Ma, G., Zhang, P., Li, J., Li, X., & Zhang, J. (2012). DNA binding and anticancer activity of naphthalimides with 4-hydroxyl-alkylamine side chains at different lengths. Bioorganic & Medicinal Chemistry Letters, 22(2), 937–941.CrossRefGoogle Scholar
  22. 22.
    Wang, W., Wen, Q., Zhang, Y., Fei, X., Li, Y., Yang, Q., & Xu, X. (2013). Simple naphthalimide-based fluorescent sensor for highly sensitive and selective detection of Cd2+ and Cu2+ in aqueous solution and living cells. Dalton Transactions, 42(5), 1827–1833.CrossRefGoogle Scholar
  23. 23.
    Young Choi, J., Kim, G.-H., Guo, Z., Yeon Lee, H., Swamy, K. M. K., Pai, J., Shin, S., Shin, I., & Yoon, J. (2013). Highly selective ratiometric fluorescent probe for Au3+ and its application to bioimaging. Biosensors and Bioelectronics, 49438–49441.Google Scholar
  24. 24.
    Yang, Q., Yang, P., Qian, X., & Tong, L. (2008). Naphthalimide intercalators with chiral amino side chains: effects of chirality on DNA binding, photodamage and antitumor cytotoxicity. Bioorganic & Medicinal Chemistry Letters, 18(23), 6210–6213.CrossRefGoogle Scholar
  25. 25.
    Ou, Z., Qian, Y., Gao, Y., Wang, Y., Yang, G., Li, Y., Jiang, K., & Wang, X. (2016). Photophysical, G-quadruplex DNA binding and cytotoxic properties of terpyridine complexes with a naphthalimide ligand. RSC Advances, 6(43), 36923–36931.CrossRefGoogle Scholar
  26. 26.
    Ott, I., Xu, Y., Liu, J., Kokoschka, M., Harlos, M., Sheldrick, W. S., & Qian, X. (2008). Sulfur-substituted naphthalimides as photoactivatable anticancer agents: DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells. Bioorganic & Medicinal Chemistry, 16(15), 7107–7116.CrossRefGoogle Scholar
  27. 27.
    Zhu, H., Huang, M., Yang, F., Chen, Y., Miao, Z.-H., Qian, X.-H., Xu, Y.-F., Qin, Y.-X., Luo, H.-B., Shen, X., Geng, M.-Y., Cai, Y.-J., & Ding, J. (2007). R16, a novel amonafide analogue, induces apoptosis and G2-M arrest via poisoning topoisomerase II. Molecular Cancer Therapeutics, 6(2), 484–495.CrossRefGoogle Scholar
  28. 28.
    Xu, Y., Qu, B., Qian, X., & Li, Y. (2005). Five-member thio-heterocyclic fused naphthalimides with aminoalkyl side chains: intercalation and photocleavage to DNA. Bioorganic & Medicinal Chemistry Letters, 15(4), 1139–1142.CrossRefGoogle Scholar
  29. 29.
    Li, Z., Yang, Q., & Qian, X. (2005). Novel 2-aminothiazonaphthalimides as visible light activatable photonucleases: effects of intercalation, heterocyclic-fused area and side chains. Bioorganic & Medicinal Chemistry Letters, 15(7), 1769–1772.CrossRefGoogle Scholar
  30. 30.
    Li, Y., Xu, Y., Qian, X., & Qu, B. (2004). Naphthalimide–thiazoles as novel photonucleases: molecular design, synthesis, and evaluation. Tetrahedron Letters, 45(6), 1247–1251.CrossRefGoogle Scholar
  31. 31.
    Li, F., Cui, J., Guo, L., Qian, X., Ren, W., Wang, K., & Liu, F. (2007). Molecular design, chemical synthesis, and biological evaluation of ‘4-1’ pentacyclic aryl/heteroaryl-imidazonaphthalimides. Bioorganic & Medicinal Chemistry, 15(15), 5114–5121.CrossRefGoogle Scholar
  32. 32.
    Ou, Z., Xu, M., Gao, Y., Hu, R., Li, Q., Cai, W., Wang, Z., Qian, Y., & Yang, G. (2017). Synthesis, G-quadruplex binding properties and cytotoxicity of naphthalimide-thiourea conjugates. New Journal of Chemistry, 41(17), 9397–9405.CrossRefGoogle Scholar
  33. 33.
    Qian, X., Li, Y., Xu, Y., Liu, Y., & Qu, B. (2004). Highly-efficient DNA photocleavers with long wavelength absorptions: thio-heterocyclic fused naphthalimides containing aminoalkyl side chains. Bioorganic & Medicinal Chemistry Letters, 14(10), 2665–2668.CrossRefGoogle Scholar
  34. 34.
    Verma, M., Luxami, V., & Paul, K. (2013). Synthesis, in vitro evaluation and molecular modelling of naphthalimide analogue as anticancer agents. European Journal of Medicinal Chemistry, 68352–68360.Google Scholar
  35. 35.
    Liu, X.-W., Lu, J.-L., Chen, Y.-D., Li, L., & Zhang, D.-S. (2011). DNA binding behaviors and cleavage properties of a Ru(II) polypyridyl complex. Inorganica Chimica Acta, 379(1), 1–6.CrossRefGoogle Scholar
  36. 36.
    Brana, M. F., Cacho, M., Ramos, A., Teresa Dominguez, M., Pozuelo, J. M., Abradelo, C., Fernanda Rey-Stolle, M., Yuste, M., Carrasco, C., & Bailly, C. (2003). Synthesis, biological evaluation and DNA binding properties of novel mono and bisnaphthalimides. Organic & Biomolecular Chemistry, 1(4), 648–654.CrossRefGoogle Scholar
  37. 37.
    Braña, M. F., Cacho, M., García, M. A., de Pascual-Teresa, B., Ramos, A., Domínguez, M. T., Pozuelo, J. M., Abradelo, C., Rey-Stolle, M. F., Yuste, M., Báñez-Coronel, M., & Lacal, J. C. (2004). New analogues of amonafide and elinafide, containing aromatic heterocycles: synthesis, antitumor activity, molecular modeling, and DNA binding properties. Journal of Medicinal Chemistry, 47(6), 1391–1399.CrossRefGoogle Scholar
  38. 38.
    Sun, Y., Li, J., Zhao, H., & Tan, L. (2016). Ruthenium(II) polypyridyl complexes with 1,8-naphthalimide group as DNA binder, photonuclease, and dual inhibitors of topoisomerases I and IIα. Journal of Inorganic Biochemistry, 163(Supplement C), 88–94.CrossRefGoogle Scholar
  39. 39.
    Filosa, R., Peduto, A., Micco, S. D., Caprariis, P., Festa, M., Petrella, A., Capranico, G., & Bifulco, G. (2009). Molecular modelling studies, synthesis and biological activity of a series of novel bisnaphthalimides and their development as new DNA topoisomerase II inhibitors. Bioorganic & Medicinal Chemistry, 17(1), 13–24.CrossRefGoogle Scholar
  40. 40.
    Kamal, A., Bolla, N. R., Srikanth, P. S., & Srivastava, A. K. (2013). Naphthalimide derivatives with therapeutic characteristics: a patent review. Expert Opinion on Therapeutic Patents, 23(3), 299–317.CrossRefGoogle Scholar
  41. 41.
    Quintana-Espinoza, P., García-Luis, J., Amesty, Á., Martín-Rodríguez, P., Lorenzo-Castrillejo, I., Ravelo, A. G., Fernández-Pérez, L., Machín, F., & Estévez-Braun, A. (2013). Synthesis and study of antiproliferative, antitopoisomerase II, DNA-intercalating and DNA-damaging activities of arylnaphthalimides. Bioorganic & Medicinal Chemistry, 21(21), 6484–6495.CrossRefGoogle Scholar
  42. 42.
    Peduto, A., Pagano, B., Petronzi, C., Massa, A., Esposito, V., Virgilio, A., Paduano, F., Trapasso, F., Fiorito, F., Florio, S., Giancola, C., Galeone, A., & Filosa, R. (2011). Design, synthesis, biophysical and biological studies of trisubstituted naphthalimides as G-quadruplex ligands. Bioorganic & Medicinal Chemistry, 19(21), 6419–6429.CrossRefGoogle Scholar
  43. 43.
    Sissi, C., Lucatello, L., Paul Krapcho, A., Maloney, D. J., Boxer, M. B., Camarasa, M. V., Pezzoni, G., Menta, E., & Palumbo, M. (2007). Tri-, tetra- and heptacyclic perylene analogues as new potential antineoplastic agents based on DNA telomerase inhibition. Bioorganic & Medicinal Chemistry, 15(1), 555–562.CrossRefGoogle Scholar
  44. 44.
    Coban, B., & Yildiz, U. (2014). DNA-binding studies and antitumor evaluation of novel water soluble organic pip and hpip analogs. Applied Biochemistry and Biotechnology, 172(1), 248–262.CrossRefGoogle Scholar
  45. 45.
    Coban, B., Yildiz, U., & Sengul, A. (2013). Synthesis, characterization, and DNA binding of complexes [Pt(bpy)(pip)]2+ and [Pt(bpy)(hpip)]2+. Journal of Biological Inorganic Chemistry, 18(4), 461–471.CrossRefGoogle Scholar
  46. 46.
    Dixon, I. M., Lopez, F., Estève, J.-P., Tejera, A. M., Blasco, M. A., Pratviel, G., & Meunier, B. (2005). Porphyrin derivatives for telomere binding and telomerase inhibition. Chembiochem, 6(1), 123–132.CrossRefGoogle Scholar
  47. 47.
    Seferoğlu, Z., Mahmoud, M. M. A., & Ihmels, H. (2016). Studies of the binding interactions of dicationic styrylimidazo[1,2-a]pyridinium dyes with duplex and quadruplex DNA. Dyes and Pigments, 125(Supplement C), 241–248.CrossRefGoogle Scholar
  48. 48.
    Zimmer, C., Birch-Hirschfeld, E., & Weiss, R. (1974). CD studies on the conformation of some deoxyoligonucleotides containing adenine and thymine residues. Nucleic Acids Research, 1(8), 1017–1030.CrossRefGoogle Scholar
  49. 49.
    Ghasemi, J., Ahmadi, S., Ahmad, A. I., & Ghobadi, S. (2008). Spectroscopic characterization of thiazole orange-3 DNA interaction. Applied Biochemistry and Biotechnology, 149(1), 9–22.CrossRefGoogle Scholar
  50. 50.
    Barton, J. K., Danishefsky, A., & Goldberg, J. (1984). Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA. Journal of the American Chemical Society, 106(7), 2172–2176.CrossRefGoogle Scholar
  51. 51.
    Kieltyka, R., Fakhoury, J., Moitessier, N., & Sleiman, H. F. (2008). Platinum phenanthroimidazole complexes as G-quadruplex DNA selective binders. Chemistry - A European Journal, 14(4), 1145–1154.CrossRefGoogle Scholar
  52. 52.
    Uslan, C., & Şebnem Sesalan, B. (2012). Synthesis of novel DNA-interacting phthalocyanines. Dyes and Pigments, 94(1), 127–135.CrossRefGoogle Scholar
  53. 53.
    Wang, K.-R., Qian, F., Wang, X.-M., Tan, G.-H., Rong, R.-X., Cao, Z.-R., Chen, H., Zhang, P.-Z., & Li, X.-L. (2014). Cytotoxic activity and DNA binding of naphthalimide derivatives with amino acid and dichloroacetamide functionalizations. Chinese Chemical Letters, 25(7), 1087–1093.CrossRefGoogle Scholar
  54. 54.
    Verma, M., Luxami, V., & Paul, K. (2015). Synthesis, in vitro evaluation and DNA interaction studies of N-allyl naphthalimide analogues as anticancer agents. RSC Advances, 5(52), 41803–41813.CrossRefGoogle Scholar
  55. 55.
    Ryan, G. J., Poynton, F. E., Elmes, R. B. P., Erby, M., Williams, D. C., Quinn, S. J., & Gunnlaugsson, T. (2015). Unexpected DNA binding properties with correlated downstream biological applications in mono vs. bis-1,8-naphthalimide Ru(ii)-polypyridyl conjugates. Dalton Transactions, 44(37), 16332–16344.CrossRefGoogle Scholar
  56. 56.
    Eftink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114(2), 199–227.CrossRefGoogle Scholar
  57. 57.
    Monchaud, D., Allain, C., & Teulade-Fichou, M. P. (2006). Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorganic & Medicinal Chemistry Letters, 16(18), 4842–4845.CrossRefGoogle Scholar
  58. 58.
    Largy, E., Hamon, F., & Teulade-Fichou, M. P. (2011). Development of a high-throughput G4-FID assay for screening and evaluation of small molecules binding quadruplex nucleic acid structures. Analytical and Bioanalytical Chemistry, 400(10), 3419–3427.CrossRefGoogle Scholar
  59. 59.
    Arola-Arnal, A., Benet-Buchholz, J., Neidle, S., & Vilar, R. (2008). Effects of metal coordination geometry on stabilization of human telomeric quadruplex DNA by square-planar and square-pyramidal metal complexes. Inorganic Chemistry, 47(24), 11910–11919.CrossRefGoogle Scholar
  60. 60.
    Suntharalingam, K., White, A. J. P., & Vilar, R. (2010). Two metals are better than one: investigations on the interactions between dinuclear metal complexes and quadruplex DNA. Inorganic Chemistry, 49(18), 8371–8380.CrossRefGoogle Scholar
  61. 61.
    Monchaud, D., Allain, C., Bertrand, H., Smargiasso, N., Rosu, F., Gabelica, V., De Cian, A., Mergny, J. L., & Teulade-Fichou, M. P. (2008). Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie, 90(8), 1207–1223.CrossRefGoogle Scholar
  62. 62.
    Paramasivan, S., Rujan, I., & Bolton, P. H. (2007). Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods, 43(4), 324–331.CrossRefGoogle Scholar
  63. 63.
    Gonçalves DPN, Rodriguez R, Balasubramanian S, Sanders JKM (2006) Tetramethylpyridiniumporphyrazines—a new class of G-quadruplex inducing and stabilising ligands. Chemical Communications (45), 4685–4687.
  64. 64.
    Duskova, K., Sierra, S., Arias-Pérez, M.-S., & Gude, L. (2016). Human telomeric G-quadruplex DNA interactions of N-phenanthroline glycosylamine copper(II) complexes. Bioorganic & Medicinal Chemistry, 24(1), 33–41.CrossRefGoogle Scholar
  65. 65.
    Ragazzon, P., & Chaires, J. B. (2007). Use of competition dialysis in the discovery of G-quadruplex selective ligands. Methods, 43(4), 313–323.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Arts and SciencesBulent Ecevit UniversityZonguldakTurkey

Personalised recommendations