Nanofibrous Tubular Membrane for Blood Hemodialysis

  • Farideh Mohammadi
  • Afsaneh Valipouri
  • Dariush Semnani
  • Fereshteh Alsahebfosoul
Article
  • 14 Downloads

Abstract

As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove urea and creatinine from urine and blood serums of dialysis patients. Nanofibrous membranes were electrospun at a concentration of 11.5 wt% of polysulfone (PS) and dimethylformamide (DMF)/tetrahydrofuran (THF) with a ratio of 70/30. The effects of the rotational speed of collectors, electrospinning duration, and inner diameter of the tubular nanofibrous membrane on the urea and creatinine removal efficiency of the tubular membrane were investigated through the hemodialysis simulation experiments. It was found that the tubular membrane with an inner diameter of 3 mm elecrospun at shorter duration with lower collecting speed had the highest urea and creatinine removal efficiency. The hemodialysis simulation experiment showed that the urea and creatinine removal efficiency of the tubular membrane with a diameter of 3 mm were 90.4 and 100%, respectively. Also, three patients’ blood serums were tested with the nanofibrous membrane. The results showed that the creatinine and urea removal rates were 93.2 and 90.3%, respectively.

Keywords

Nanofibrous membrane Blood hemodialysis Urea and creatinine removal 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Namekawa, K., Schreiber, M. T., Ebara, M., & Aoyagi, T. (2014). Fabrication of zeolite-polymer composite nanofibers for removal of uremic toxins from kidney failure patients. Biomaterials Science, 2(5), 674–679.CrossRefGoogle Scholar
  2. 2.
    Yu, X., Shen, L., Zhu, Y., Li, X., Yang, Y., Wang, X., Zhu, M., & Hsiao, B. S. (2017). High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule. Journal of Membrane Science, 523, 173–184.CrossRefGoogle Scholar
  3. 3.
    Reubi, F. C. (1953). Glomerular filtration rate, renal blood flow and blood viscosity during and after diabetic coma. Circulation Research, 1(5), 410–413.CrossRefGoogle Scholar
  4. 4.
    Chiu, W. Y., Chang, H. R., Lin, Z. Z., Halim, E., & Lian, J. D. (2007). Intradialitic dopamin therapy in maintenance hemodialysis patients with persistent hypotension. Acta Nephrology, 21, 22–29.Google Scholar
  5. 5.
    He, J., Lin, X. M., Chan, H., Vuković, L., Král, P., & Jaeger, H. M. (2011). Diffusion and filtration properties of self-assembled gold nanocrystal membranes. Nano Letters, 11(6), 2430–2435.CrossRefGoogle Scholar
  6. 6.
    Barhate, R., & Ramakrishna, S. (2007). Nanofibrous filtering media: filtration problems and solutions from tiny materials. Journal of Membrane Science, 296(1-2), 1–8.CrossRefGoogle Scholar
  7. 7.
    Ramanathan, G., Elumalai, R., Periyasamy, S., & Lakkakula, B. (2014). Role of renin-angiotensin-aldosterone system gene polymorphisms and hypertension-induced end-stage renal disease in autosomal dominant polycystic kidney disease. Iranian Journal of Kidney Diseases, 8(4), 265–277.Google Scholar
  8. 8.
    Gura, V., Macy, A. S., Beizai, M., Ezon, C., & Golper, T. A. (2009). Technical breakthroughs in the wearable artificial kidney (WAK). Clinical Journal of the American Society of Nephrology, 4(9), 1441–1448.CrossRefGoogle Scholar
  9. 9.
    Wester, M., Simonis, F., Lachkar, N., Wodzig, W. K., Meuwissen, F. J., Kooman, J. P., Boer, W. H., Joles, J. A., & Gerritsen, K. G. (2014). Removal of urea in a wearable dialysis device: a reappraisal of electro-oxidation. Artificial Organs, 38(12), 998–1006.CrossRefGoogle Scholar
  10. 10.
    Ould-Dris, A., Paullier, P., Griscom, L., Legallais, C., & Leclerc, E. (2010). Analysis of the mass transfers in an artificial kidney microchip. Journal of Membrane Science, 352(1-2), 116–125.CrossRefGoogle Scholar
  11. 11.
    Gura, V., Davenport, A., Beizai, M., Ezon, C., & Ronco, C. (2009). β2-Microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. American Journal of Kidney Diseases, 54(1), 104–111.CrossRefGoogle Scholar
  12. 12.
    Idris, A., & Yet, K. L. (2006). The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. Journal of Membrane Science, 280(1-2), 920–927.CrossRefGoogle Scholar
  13. 13.
    Kee, C. M., & Idris, A. (2010). Permeability performance of different molecular weight cellulose acetate hemodialysis membrane. Separation and Purification Technology, 75(2), 102–113.CrossRefGoogle Scholar
  14. 14.
    Roy, A., Dadhich, P., Dhara, S., & De, S. (2015). In vitro cytocompatibility and blood compatibility of polysulfone blend, surface-modified polysulfone and polyacrylonitrile membranes for hemodialysis. RSC Advances, 5(10), 7023–7034.CrossRefGoogle Scholar
  15. 15.
    Ran, F., Nie, S. Q., Zhao, W. F., Li, J., Su, B. H., Sun, S. D., & Zhao, C. S. (2011). Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock coPolymer of poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinyl pyrrolidone). Acta Biomaterialia, 7(9), 3370–3381.CrossRefGoogle Scholar
  16. 16.
    Xiang, T., Zhang, L. S., Wang, R., Xia, Y., Su, B. H., & Zhao, C. S. (2014). Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. Journal of Colloid and Interface Science, 432, 47–56.CrossRefGoogle Scholar
  17. 17.
    Irfan, M., Idris, A., Yusof, N. M., Khairuddin, N. F. M., & Akhmal, H. (2014). Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. Journal of Membrane Science, 467, 73–84.CrossRefGoogle Scholar
  18. 18.
    Rana, D., & Matsuura, T. (2010). Surface modifications for antifouling membranes. Chemical Reviews, 110(4), 2448–2471.CrossRefGoogle Scholar
  19. 19.
    Tijink, M., Janssen, J., Timmer, M., Austen, J., Aldenhoff, Y., Kooman, J., Koole, L., Damoiseaux, J., Oerle, R. V., Henskens, Y., & Stamatialis, D. (2013). Development of novel membranes for blood purification therapies based on copolymers of n-vinylpyrrolidone and n-butylmethacrylate. Journal of Materials Chemistry B, 1(44), 6066–6077.CrossRefGoogle Scholar
  20. 20.
    Acchiardo, S., Kraus, A. P., & Jennings, B. R. (1989). β2-Microglobulin levels in patients with renal insufficiency. American Journal of Kidney Diseases, 13(1), 70–74.CrossRefGoogle Scholar
  21. 21.
    Su, B., Fu, P., Li, Q., Tao, Y., Li, Z., Zao, H., & Zhao, C. (2008). Evaluation of polyethersulfone highflux hemodialysis membrane in vitro and in vivo. Journal of Materials Science: Materials in Medicine, 19(2), 745–751.Google Scholar
  22. 22.
    Li, L., Cheng, C., Xiang, T., Tang, M., Zhao, W., Shun, S., & Zhao, C. (2012). Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. Journal of Membrane Science, 405, 261–274.CrossRefGoogle Scholar
  23. 23.
    Vengopal, J., & Ramakrishna, S. (2005). Applications of polymer nanofibers in biomedicine and biotechnolog. Applied Biochemistry and Biotechnology, 125(3), 147–157.CrossRefGoogle Scholar
  24. 24.
    Sulaiman, S., Mokhtar, M. N., Naim, M. N., Baharuddin, A. S., & Sulaiman, A. (2014). A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Applied Biochemistry and Biotechnology, 175(4), 1817–1842.CrossRefGoogle Scholar
  25. 25.
    Valipouri, A., Gharehaghaji, A. A., Alirezazadeh, A., & Ravandi, S. A. H. (2017). Porosity characterization of biodegradable porous poly (L-lactic acid) electrospun nanofibers. Material Research Express, 4(12), 125002.CrossRefGoogle Scholar
  26. 26.
    Lee, K. H., Kim, D. J., Min, B. G., & Lee, S. H. (2007). Polymeric nanofiber web-based artificial renal microfluidic chip. Biomedical Microdevices, 9(4), 435–442.CrossRefGoogle Scholar
  27. 27.
    Lu, L., Samarasekera, C., & Yeow, J. T. W. (2015). Creatinine adsorption capacity of electrospun polyacrylonitrile (PAN)-zeolite nanofiber membranes for potential artificial kidney applications. Journal of Applied Polymer Science, 132, 42418.Google Scholar
  28. 28.
    Tietz NW, Burtis CA, Ashwood ER. (1999). Tietz textbook of clinical chemistry. 3rd ed., Saunders.Google Scholar
  29. 29.
    Thomas, L. (1998). Clinical laboratory diagnostics: use and assessment of clinical laboratory results. Frankfurt: TH-Books.Google Scholar
  30. 30.
    Pappenheimer, J. R., Renkin, E. M., & Borrero, L. (1951). Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. The American Journal of Physiology, 167(1), 13–46.Google Scholar
  31. 31.
    Daugirdas JT, Blake P, Ing TS, Blagg C. (2007). Handbook of dialysis. 4rth ed. vol. 36, no. 6. Lippincott Williams & Wilkins.Google Scholar
  32. 32.
    Brunet, S., Leblanc, M., Geadah, D., Parent, D., Courteau, S., & Cardinal, J. (1999). Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. American Journal of Kidney Diseases, 34(3), 486–492.CrossRefGoogle Scholar
  33. 33.
    Zhang, Q., Lu, X., Liu, J., & Zhao, L. (2015). Preparation and preliminary dialysis performance research of polyvinylidene fluoride hollow fiber membranes. Membranes (Basel)., 5(1), 120–135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Immunology, School of MedicineIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations