Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 2, pp 292–305 | Cite as

Synthesis of Lactosucrose Using a Recombinant Levansucrase from Brenneria goodwinii

  • Wei Xu
  • Qian Liu
  • Shuhuai Yu
  • Tao Zhang
  • Wanmeng Mu
Article
  • 244 Downloads

Abstract

Lactosucrose is a kind of trisaccharide that functions as a significant prebiotic in the maintenance of gastrointestinal homeostasis for human. In this study, a levansucrase from Brenneria goodwinii was further used for the lactosucrose production. The recombinant levansucrase showed efficiency in the lactosucrose production by transfructosylation from sucrose and lactose, and no other oligosaccharide or polysaccharide was detected in the reaction mixture. The transfructosylation product by this recombinant enzyme was structurally determined to be lactosucrose by FT-IR and NMR. The production condition was optimized as pH at 6.0, temperature at 35 °C, 5 U mL−1 enzyme, 180 g L−1 sucrose, and 180 g L−1 lactose. Under the optimal condition, the enzyme could approximately produce 100 g L−1 lactosucrose when the reaction reached equilibrium. The recombinant levansucrase could effectively and exclusively catalyze the formation of lactosucrose, which might expand the enzymatic choice for further preparation of lactosucrose.

Keywords

Lactosucrose Levansucrase Transfructosylation Optimized 

Notes

Funding Information

This work was supported by the Support Project of Jiangsu Province (No. 2015-SWYY-009).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2743_MOESM1_ESM.docx (243 kb)
ESM 1 (DOCX 242 kb)

References

  1. 1.
    Roberfroid, M. (2007). Prebiotics: the concept revisited. Journal of Nutrition, 137(3), 830S–837S.CrossRefGoogle Scholar
  2. 2.
    Al-Sheraji, S., Smail, A., Manap, M., Mustafa, S., Yusof, R., & Hassan, F. (2013). Prebiotics as functional foods: a review. Journal of Functional Foods, 5(4), 1542–1553.CrossRefGoogle Scholar
  3. 3.
    Xu, W., Yu, S., Liu, Q., Zhang, T., Jiang, B., & Mu, W. (2017). Enzymatic production of melibiose from raffinose by the levansucrase from Leuconostoc mesenteroides B-512 FMC. Journal of Agricultural and Food Chemistry, 65(19), 3910–3918.CrossRefGoogle Scholar
  4. 4.
    Mu, W., Chen, Q., Wang, X., Zhang, T., & Jiang, B. (2013). Current studies on physiological functions and biological production of lactosucrose. Applied Microbiology and Biotechnology, 97(16), 7073–7080.CrossRefGoogle Scholar
  5. 5.
    Li, W., Yu, S., Zhang, T., Jiang, B., & Mu, W. (2017). Synthesis of raffinose by transfructosylation using recombinant levansucrase from Clostridium arbusti SL206. Journal of the Science of Food Agricultural, 97(1), 43–49.CrossRefGoogle Scholar
  6. 6.
    Kihara, M., Ohba, K., & Sakata, T. (1995). Trophic effect of dietary lactosucrose on intestinal tunica muscularis and utilization of this sugar by gut microbes in red seabream Pagrus major, a marine carnivorous teleost, under artificial rearing. Comparative Biochemistry and Physiology A-Molecular and Intergative Physiol, 112(3-4), 629–634.CrossRefGoogle Scholar
  7. 7.
    Zhou, Y., Ruan, Z., Zhou, X., Huang, X., Li, H., Wang, L., Zhang, C., Deng, Z., Wu, G., & Yin, Y. (2015). Lactosucrose attenuates intestinal inflammation by promoting Th2 cytokine production and enhancing CD86 expression in colitic rats. Bioscience, Biotechnology and Bochemistry, 79(4), 643–651.CrossRefGoogle Scholar
  8. 8.
    Li, W., Wang, K., Sun, Y., Ye, H., Hu, B., & Zeng, X. (2015). Lactosucrose and its analogues derived from lactose and sucrose: influence of structure on human intestinal microbiota in vitro. Journal of Functional Foods, 17, 73–82.CrossRefGoogle Scholar
  9. 9.
    Kawase, M., Pilgrim, A., Araki, T., & Hashimoto, K. (2001). Lactosucrose production using a simulated moving bed reactor. Chemical Engineering Science, 56(2), 453–458.CrossRefGoogle Scholar
  10. 10.
    Fujita, K., Ito, T., & Kishino, E. (2009). Characteristics and applications of lactosucrose. Journal of Engineering Thermophysics, 13–21.Google Scholar
  11. 11.
    Ogata, Y., Fujita, K., Ishigami, H., Hara, K., Terada, A., Hara, H., Fujimori, I., & Mitsuoka, T. (1993). Effect of a small amount of 4G-beta-D-galactosylsucrose (lactosucrose) on fecal flora and fecal properties. Nipponyo Shokuryo Gakkaishi, 46(4), 317–323.CrossRefGoogle Scholar
  12. 12.
    Fujita, K., Hara, K., Hashimoto, H., & Kitahara, S. (1990). Transfructosylation catalyzed by β-fructofuranosidase I from Arthrobacter sp. K-1. Agricultural and Biological Chemistry, 54(10), 2655–2661.CrossRefGoogle Scholar
  13. 13.
    Okuda, H., & Han, I. (2001). Medicinal plant and its related metabolic modulators. Nihon Yakurigaku Zasshi Folia Pharmacologica Japonica., 118(5), 347–351.CrossRefGoogle Scholar
  14. 14.
    Silvério, S. C., Macedo, E. A., Teixeira, J. A., & Rodrigues, L. R. (2015). Perspectives on the biotechnological production and potential applications of lactosucrose: a review. Journal of Functional Food, 19, 74–90.CrossRefGoogle Scholar
  15. 15.
    Li, W., Xiong, X., Tang, S., Hu, B., Tian, L., Sun, Y., Ye, H., & Zeng, X. (2009). Effective enzymatic synthesis of lactosucrose and its analogues by β-D-galactosidase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 57(9), 3927–3933.CrossRefGoogle Scholar
  16. 16.
    Ohta, Y., Hatada, Y., Hidaka, Y., Shimane, Y., Usui, Y., Ito, T., Fujita, K., Yokoi, G., Mori, M., Sato, S., Miyazaki, T., Nishikawa, A., & Tonozuka, T. (2014). Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 beta-fructofuranosidase. Applied Microbiology and Biotechnology, 98(15), 6667–6677.CrossRefGoogle Scholar
  17. 17.
    Fujita, K., Hara, K., Hashimoto, H., & Kitahata, S. (2014). Purification and some properties ofβ-Fructofuranosidase I from Arthrobacter sp. K-1. Agricultural and Biological Chemistry, 54, 913–919.Google Scholar
  18. 18.
    Avigad, G. (1957). Enzymatic synthesis and characterization of a new trisaccharide, α-lactosyl-β-fructofuranoside. Journal of Biological Chemistry, 229(1), 121–129.Google Scholar
  19. 19.
    Park, N., Choi, H., & Oh, D. (2005). Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnology Letters, 27(7), 495–497.CrossRefGoogle Scholar
  20. 20.
    Choi, H., Kim, C., Kim, P., Jung, H., & Oh, D. (2004). Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnology Progress, 20(6), 1876–1879.CrossRefGoogle Scholar
  21. 21.
    Lee, J., Lim, J., Song, Y., Kang, S., Park, C., & Kim, S. (2007). Optimization of culture medium for lactosucrose (G-beta-D-galactosylsucrose) production by Sterigmatomyces elviae mutant using statistical analysis. Journal of Microbiology and Biotechnology, 17(12), 1996–2004.Google Scholar
  22. 22.
    Lu, L., Fu, F., Zhao, R., Jin, L., He, C., Xu, L., & Xiao, M. (2014). A recombinant levansucrase from Bacillus licheniformis 8-37-0-1 catalyzes versatile transfructosylation reactions. Process Biochemistry, 49(9), 1503–1510.CrossRefGoogle Scholar
  23. 23.
    Li, W., Yu, S., Zhang, T., Jiang, B., Stressler, T., Fischer, L., & Mu, W. (2015). Efficient biosynthesis of lactosucrose from sucrose and lactose by the purified recombinant levansucrase from Leuconostoc mesenteroides B-512 FMC. Journal of Agricultural and Food Chemistry, 63(44), 9755–9763.CrossRefGoogle Scholar
  24. 24.
    Liu, Q., Yu, S., Zhang, T., Jiang, B., & Mu, W. (2017). Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydrate Polymers, 157, 1732–1740.CrossRefGoogle Scholar
  25. 25.
    Waterborg, J., & Matthews, H. (1994). The Lowry method for protein quantitation (pp. 7–9). Totowa: Humana Press.Google Scholar
  26. 26.
    Wuerges, J., Caputi, L., Cianci, M., Boivin, S., Meijers, R., & Benini, S. (2015). The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site. Journal of Structural Biology, 191(3), 290–298.CrossRefGoogle Scholar
  27. 27.
    Goldman, D., Lavid, N., Schwartz, A., Shoham, G., Danino, D., & Shoham, Y. (2008). Two active forms of Zymomonas mobilis levansucrase. An ordered microfibril structure of the enzyme promotes levan polymerization. Journal of Biological Chemistry, 283, 3209–3217.CrossRefGoogle Scholar
  28. 28.
    Martinez-Fleites, C., Tarbouriech, N., Ortiz-Lombardia, M., Taylor, E., Rodriguez, A., Ramirez, R., Hernandez, L., & Davies, G. (2004). Crystallization and preliminary X-ray diffraction analysis of levansucrase (LsdA) from Gluconacetobacter diazotrophicus SRT4. Acta Crystallographica Section D, 60(1), 181–183.CrossRefGoogle Scholar
  29. 29.
    Li, Y., Triccas, J., & Ferenci, T. (1997). A novel levansucrase-levanase gene cluster in Bacillus stearothermophilus ATCC 12980. Biochimica et Biophysica Acta, 1353(3), 203–208.CrossRefGoogle Scholar
  30. 30.
    Zhu, G., Sheng, L., & Tong, Q. (2014). Preparation and characterization of carboxymethyl-gellan and pullulan blend films. Food Hydrocolloid, 35, 341–347.CrossRefGoogle Scholar
  31. 31.
    Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. International Journal of Biological Macromolecule, 53, 114–121.CrossRefGoogle Scholar
  32. 32.
    Han, W., Byun, S., Kim, M., Sohn, E., Lim, J., Um, B., Kim, C., Kang, S., & Jang, K. (2009). Production of lactosucrose from sucrose and lactose by a levansucrase from Zymomonas mobilis. Journal of Microbiology and Biotechnology, 19(10), 1153–1160.Google Scholar
  33. 33.
    Seibel, J., Moraru, R., Gotze, S., Buchholz, K., Na'amnieh, S., Pawlowski, A., & Hecht, H. (2006). Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydrate Research, 341(14), 2335–2349.CrossRefGoogle Scholar
  34. 34.
    Han, W., Byun, S., Lee, J., Kim, M., Kang, S., Kim, C., Son, E., & Jang, K. (2007). Synthesis of lactosucrose formed by levansucrase from Pseudomonas aurantiaca. Journal of Biotechnology, 131(2), S113–S113.CrossRefGoogle Scholar
  35. 35.
    Li, R., Zhang, T., Jiang, B., Mu, W., & Miao, M. (2015). Purification and characterization of an intracellular levansucrase derived from Bacillus methylotrophicus SK 21.002. Biotechnology and Applied Biochemistry, 62(6), 815–822.CrossRefGoogle Scholar
  36. 36.
    Wu, C., Zhang, T., Mu, W., Miao, M., & Jiang, B. (2015). Biosynthesis of lactosylfructoside by an intracellular levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydrate Research, 401, 122–126.CrossRefGoogle Scholar
  37. 37.
    Raga-Carbajal, E., Carrillo-Nava, E., Costas, M., Porras-Dominguez, J., Lopez-Munguia, A., & Olvera, C. (2016). Size product modulation by enzyme concentration reveals two distinct levan elongation mechanisms in Bacillus subtilis levansucrase. Glycobiology, 26(4), 377–385.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wei Xu
    • 1
  • Qian Liu
    • 1
  • Shuhuai Yu
    • 1
  • Tao Zhang
    • 1
  • Wanmeng Mu
    • 1
    • 2
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.International Joint Laboratory on Food SafetyJiangnan UniversityWuxiChina

Personalised recommendations