Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 122–131 | Cite as

Enhanced Inulin Saccharification by Self-Produced Inulinase from a Newly Isolated Penicillium sp. and its Application in d-Lactic Acid Production

  • Zhaojuan Zheng
  • Qianqian Xu
  • Peng Liu
  • Fan Zhou
  • Jia OuyangEmail author


In order to find an alternative for commercial inulinase, a strain XL01 identified as Penicillium sp. was screened for inulinase production. The broth after cultivated was centrifuged, filtered, and used as crude enzyme for the following saccharification. At pH 5.0 and 50 °C, the crude enzyme released 84.9 g/L fructose and 20.7 g/L glucose from 120 g/L inulin in 72 h. In addition, simultaneous saccharification and fermentation of chicory flour for d-lactic acid production was carried out using the self-produced crude inulinase and Lactobacillus bulgaricus CGMCC 1.6970. A high d-lactic acid titer and productivity of 122.0 g/L and 1.69 g/(L h) was achieved from 120 g/L chicory flour in 72 h. The simplicity for inulinase production and the high efficiency for d-lactic acid fermentation provide a perspective and profitable industrial biotechnology for utilization of the inulin-rich biomass.


Inulinase Chicory flour Penicillium sp. d-Lactic acid Simultaneous saccharification and fermentation 



This study was supported by the National Natural Science Foundation of China (51776099, 31300487), the Key Research and Development Program of Jiangsu Province of China (BF2015007). The authors are also grateful to the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yu, H., Zhang, M., Ouyang, J., & Shen, Y. (2014). Comparative study on four chemical pretreatment methods for an efficient saccharification of corn stover. Energy & Fuels, 28(7), 4282–4287.CrossRefGoogle Scholar
  2. 2.
    Wang, L., Xue, Z., Zhao, B., Yu, B., Xu, P., & Ma, Y. (2013). Jerusalem artichoke powder: a useful material in producing high-optical-purity L-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresource Technology, 130, 174–180.CrossRefPubMedGoogle Scholar
  3. 3.
    Chi, Z. M., Zhang, T., Cao, T. S., Liu, X. Y., Cui, W., & Zhao, C. H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresource Technology, 102(6), 4295–4303.CrossRefPubMedGoogle Scholar
  4. 4.
    Dao, T. H., Zhang, J., & Bao, J. (2013). Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresource Technology, 148, 157–162.CrossRefPubMedGoogle Scholar
  5. 5.
    Li, L., Chen, C., Li, K., Wang, Y., Gao, C., Ma, C., & Xu, P. (2014). Efficient simultaneous saccharification and fermentation of inulin to 2,3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Applied and Environmental Microbiology, 80(20), 6458–6464.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang, S. A., & Li, F. L. (2013). Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 79(1), 403–406.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shi, N., Mao, W., He, X., Chi, Z., Chi, Z., & Liu, G. (2017). Co-expression of exo-inulinase and endo-inulinase genes in the oleaginous yeast Yarrowia lipolytica for efficient single cell oil production from inulin. Applied Biochemistry and Biotechnology.
  8. 8.
    Cao, C., Zhang, L., Gao, J., Xu, H., Xue, F., Huang, W., & Li, Y. (2017). Research on the solid state fermentation of Jerusalem artichoke pomace for producing R, R-2, 3-butanediol by Paenibacillus polymyxa ZJ-9. Applied Biochemistry and Biotechnology, 182(2), 687–696.CrossRefPubMedGoogle Scholar
  9. 9.
    Park, J. M., Oh, B. R., Kang, I. Y., Heo, S. Y., Seo, J. W., Park, S. M., Hong, W. K., & Kim, C. H. (2017). Enhancement of 2, 3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity. Journal of Industrial Microbiology & Biotechnology, 44(7), 1107–1113.CrossRefGoogle Scholar
  10. 10.
    Petrova, P., Velikova, P., Popova, L., & Petrov, K. (2015). Direct conversion of chicory flour into L(+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. Bioresource Technology, 186, 329–333.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, J., Jin, Z., Jiang, B., & Adamu, A. (2003). Production and separation of exo-and endoinulinase from Aspergillus ficuum. Process Biochemistry, 39, 5–11.CrossRefGoogle Scholar
  12. 12.
    Mansouri, S., Houbraken, J., Samson, R., Frisvad, J., Christensen, M., Tuthill, D., et al. (2013). Penicillium subrubescens, a new species efficiently producing inulinase. Antonie Van Leeuwenhoek, 103(6), 1343–1357.CrossRefPubMedGoogle Scholar
  13. 13.
    Leelaram, S., Sivanesh, N., Surianarayanan, M., Deepa, P., & Balaje, S. A. (2016). Effect of feeding strategies on inulinase production analyzed in a biocalorimeter. Process Biochemistry, 51(6), 692–703.CrossRefGoogle Scholar
  14. 14.
    Gao, C., Ma, C., & Xu, P. (2011). Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 29(6), 930–939.CrossRefPubMedGoogle Scholar
  15. 15.
    Xu, Q., Zang, Y., Zhou, J., Liu, P., Li, X., Yong, Q., & Ouyang, J. (2016). Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus. Bioprocess and Biosystems Engineering, 39(11), 1749–1757.CrossRefPubMedGoogle Scholar
  16. 16.
    Smit, E., Leeflang, P., Glandorf, B., van Elsas, J. D., & Wernars, K. (1999). Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology, 65, 2614–2621, 6.Google Scholar
  17. 17.
    Xu, Y., Zheng, Z., Xu, Q., Yong, Q., & Ouyang, J. (2016). Efficient conversion of inulin to inulooligosaccharides through endoinulinase from Aspergillus niger. Journal of Agricultural and Food Chemistry, 64(12), 2612–2618.CrossRefPubMedGoogle Scholar
  18. 18.
    Rawat, H. K., Chand Jain, S., & Kango, N. (2015). Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin-rich vegetal infusions. Biocatalysis and Biotransformation, 33(1), 61–68.CrossRefGoogle Scholar
  19. 19.
    Singh, R. S., Chauhan, K., Singh, J., Pandey, A., & Larroche, C. (2018). Solid-state fermentation of carrot pomace for the production of inulinase by Penicillium oxalicum BGPUP-4. Food Technology and Biotechnology, 56(1).Google Scholar
  20. 20.
    Flores-Gallegos, A. C., Morlett-Chávez, J. A., Aguilar, C. N., Riutort, M., & Rodríguez-Herrera, R. (2015). Gene encoding inulinase isolated from Penicillium citrinum ESS and its molecular phylogeny. Applied Biochemistry and Biotechnology, 175(3), 1358–1370.CrossRefPubMedGoogle Scholar
  21. 21.
    Kango, N., & Jain, S. C. (2011). Production and properties of microbial inulinases: recent advances. Food Biotechnology, 25(3), 165–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  3. 3.College of ForestryNanjing Forestry UniversityNanjingPeople’s Republic of China
  4. 4.Key Laboratory of Forest Genetics and Biotechnology of the Ministry of EducationNanjingPeople’s Republic of China

Personalised recommendations