Skip to main content
Log in

Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Acinetobacter strain PS12B was isolated from marine sediment and was found to be a good candidate to degrade agar and produce agarase enzyme. The extracellular agarase enzyme from strain PS12B was purified by ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography. The specific activity of the crude enzyme which was 1.52 U increased to 45.76 U, after two-stage purification, with an enzyme yield of 9.76%. Purified enzyme had a molecular mass of 24 kDa. The optimum pH and temperature for activity of purified agarase were found to be 8.0 and 40 °C, respectively. The Km and Vmax values for agarase were 4.69 mg/ml and 0.5 μmol/min, respectively. Treatment with EDTA reduced the agarase activity by 58% at 5 mM concentration. The enzyme activity was stimulated by the presence of Fe2+, Mn2+, and Ca2+ ions while reducing reagents (β-mercaptoethanol and dithiothreitol, DTT) enhanced its activity by 30–40%. The purified agarase exhibited tolerance to both detergents and organic solvents. Major hydrolysis products of agar were DP4 and also a mixture of longer oligosaccharides DP6 and DP7. The enzyme hydrolysed seaweed (Gracilaria verrucosa) exhibited strong antioxidant activity in vitro. Successful hydrolysis of seaweed indicates the potential use of the enzyme to produce seaweed hydrolysate having health benefits as well as the industrial application like the production of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chi W.J., Y.K. Chang, Y.K. and Hong, S.K. (2012) Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology 94, 917–930, 4.

  2. Fernandes, P. (2014). Marine enzymes and food industry: insight on existing and potential interactions. Frontiers in Marine Science, 1, 1–18.

    Article  Google Scholar 

  3. Fu, X. T., & Kim, S. M. (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs, 8(12), 200–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, H. M., Zheng, L., & Yan, X. J. (2005). The preparation and bioactivity research of agarooligosaccharides. Food. Technol. Biotechnol., 43, 29–36.

    CAS  Google Scholar 

  5. Kobayashi, R., M. Takisada, Suzuki T., Kirimura K. and S. Usami S. (1997) Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61, 162–163, 1.

  6. Lee, D. G., Jang, M. K., Lee, O. H., Kim, N. Y., Ju, S. A., & Lee, S. H. (2008). Over-production of a glycoside hydrolase family 50 beta-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnology Letters, 30(5), 911–918.

    Article  CAS  PubMed  Google Scholar 

  7. Hu, B., Gong, Q., Wang, Y., Ma, Y., & Li, J. (2006). Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe, 12(5-6), 260–266.

    Article  CAS  PubMed  Google Scholar 

  8. Li, M., Li, G., Zhu, L., Yin, Y., Zhao, X., Xiang, C., Yu, G., & Wang, X. (2014). Isolation and characterization of an agaro-oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals. PLoS One, 9, 1–9.

    Google Scholar 

  9. Enoki, T., Tominaga, T., Takashima, F., Ohnogi, H., & Sagawa, H. (2012). Anti-tumor-promoting activities of agaro-oligosaccharides on two-stage mouse skin carcinogenesis. Biological & Pharmaceutical Bulletin, 35(7), 1145–1149.

    Article  CAS  Google Scholar 

  10. Higashimura, Y., Naito, Y., Takagi, T., Uchiyama, K., Mizushima, K., Ushiroda, C., Ohnogi, H., Kudo, Y., Yasui, M., Inui, S., Hisada, T., Honda, A., Matsuzaki, Y., & Yoshikawa, T. (2016). Protective effect of agaro-oligo-saccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. American Journal of Physiology. Gastrointestinal and Liver Physiology, 310, 367–375.

    Article  Google Scholar 

  11. Higashimura, Y., Naito, Y., & Takagi, T. (2013). Oligosaccharides from agar inhibits murine intestinal inflammation through the induction of heme oxygenase-1 expression. Journal of Gastroenterology, 48(8), 897–909.

    Article  CAS  PubMed  Google Scholar 

  12. Potin, P., Richard, C., Rochas, C., & Kloareg, B. (1993). Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. European Journal of Biochemistry, 214(2), 599–607.

    Article  CAS  PubMed  Google Scholar 

  13. Ohta, Y., Hatada, Y., Miyazaki, M., Nogi, Y., Ito, S., & Horikoshi, K. (2005). Purification and characterization of a novel α-agarase from a Thalassomonas sp. Current Microbiology, 50(4), 212–216.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, Y.H., Jun, S.E. and Shin, H.D. (2005) Low molecular weight agarose-specific alpha-agarase from agarolytic marine microorganism Pseudoalteromonas sp. BL-3 which hydrolyzes alpha-1, 3-glycoside bond of agar or agarose to produce agarobiose and agarotetraose. Patent KR2005079035.

  15. Lakshmikanth, M., Manohar, S., Souche, Y., & Lalitha, J. (2006). Extracellular β-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. World Journal of Microbiology and Biotechnology, 22(10), 1087–1094.

    Article  CAS  Google Scholar 

  16. Lakshmikanth, M., Manohar, S., & Lalitha, J. (2009). Purification and characterization of β-agarase from agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. Process Biochemistry, 44(9), 999–1003.

    Article  CAS  Google Scholar 

  17. Leema Roseline, T., & Sachindra, N. M. (2016). Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediment. Biocatal. Agri. Biotechnol 6, 219–226.

  18. Nitin, T., Ravi, S., John, B., Vishal, G., Reddy, C.R.K., Arvind, M. and Lali, Bhavanath, J. (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci. Rep. 6, 30728.

  19. Wu, F., Wu, J., Liao, Y., Wang, M., & Shih, I. (2014). Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresource Technology, 156, 123–131.

    Article  CAS  PubMed  Google Scholar 

  20. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, A. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–273.

    CAS  PubMed  Google Scholar 

  22. Laemmeli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 277, 680–685.

    Article  Google Scholar 

  23. Merril, C. R., & Washart, K. M. (1998). Protein detection methods. In B. D. Hames (Ed.), Gel electrophoresis of proteins, a practical approach (pp. 53–92). Oxford: Oxford University Press.

    Google Scholar 

  24. Duan, X. J., Zhang, W. W., Li, X. M., & Wang, B. G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95(1), 37–43.

    Article  CAS  Google Scholar 

  25. Sowmya, R., & Sachindra, N. M. (2012). Evaluation of antioxidant activity of carotenoid extract from shrimp processing by products by in vitro assays and in membrane model system. Food Chemistry, 134(1), 308–314.

    Article  CAS  Google Scholar 

  26. Tsai, P. J., Tsai, T. H., Yu, C. H., & Ho, S. C. (2007). Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea. Food Chemistry, 103(1), 181–187.

    Article  CAS  Google Scholar 

  27. Wada, M., Kido, H., Ohyama, K., Ichibangase, T., Kishikawa, N., & Ohba, Y. (2007). Chemiluminescent screening of quenching effects of natural colorants against reactive oxygen species, evaluation of grape seed, monascus, gardenia and red radish extracts as multi-functional food additives. Food Chemistry, 101(3), 980–986.

    Article  CAS  Google Scholar 

  28. Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivates acetoami nophen, salycilate and 5-aminosalycilate as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169.

    Article  CAS  PubMed  Google Scholar 

  29. StatSoft. (1999) STATISTICA for windows. StatSoft, Inc., Tulsa.

  30. Dong, J., Tamaru, Y., & Araki, T. (2007). A unique β-agarase a from a marine bacterium, Vibrio sp. strain PO-303. Applied Microbiology and Biotechnology, 74(6), 1248–1255.

    Article  CAS  PubMed  Google Scholar 

  31. Jonghee, K., & Hong, S. K. (2012). Isolation and characterization of an agarase-producing bacterial strain, Alteromonas sp. GNUM-1, from the West Sea, Korea. Journal of Microbiology and Biotechnology, 22, 1621–1628.

    Article  CAS  Google Scholar 

  32. Kang, N. Y., Choi, Y. L., Choi, Y. S., Kim, B. K., Jeon, B. S., Cha, J. Y., Kim, C. H., & Lee, Y. C. (2003). Cloning, expression and characterization of a β-agarase gene from a marine bacterium, Pseudomonas sp. SK38. Biotechnology Letters, 25(14), 1165–1170.

    Article  CAS  PubMed  Google Scholar 

  33. Fu, X. T., Lin, H., & Kim, S. M. (2008). Purification and characterization of a novel β-agarase AgaA34, from Agarivorans albus YKW-34. Applied Microbiology and Biotechnology, 78(2), 265–273.

    Article  CAS  PubMed  Google Scholar 

  34. Ohta, Y., Hatada, Y., Nogi, Y., Miyazaki, M., Li, Z., Akita, M., Hidaka, Y., Goda, S., Ito, S., & Horikoshi, K. (2004). Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Applied Microbiology and Biotechnology, 64(4), 505–514.

    Article  CAS  PubMed  Google Scholar 

  35. Ohta, Y., Nogi, Y., Miyazaki, M., Li, M., Hatada, Y., Ito, S., & Horikoshi, K. (2004). Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from the novel marine isolate, JAMB-A94. Bioscience, Biotechnology, and Biochemistry, 68(5), 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  36. Long, M., Ziniu, Y., & Xun, X. (2010). A novel β-agarase with high pH stability from marine Agarivorans sp. LQ48. Marine Biotechnology, 12(1), 62–69.

    Article  CAS  PubMed  Google Scholar 

  37. Fu, W., Baoqin, H., Delin, D., Liu, W., & Wang, C. (2008). Purification and characterization of agarase from a marine bacterium Vibrio sp. F-6. Journal of Industrial Microbiology & Biotechnology, 35(8), 915–922.

    Article  CAS  Google Scholar 

  38. Zhang, W., & Sun, L. (2007). Cloning, characterization, and molecular application of a β-agarase gene from Vibrio sp. strain V134. Applied and Environmental Microbiology, 73(9), 2825–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ha, J.C., Kim, G.T., .Kim, S.K., Oh, T.K., Yu, J.H. and Kong, I.S. (1997) β-agarase from Pseudomonas sp. W7, purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnology and Applied Biochemistry 26, 1–6.

    CAS  PubMed  Google Scholar 

  40. Sugano, Y., Terada, I., Arita, M., Noma, M., & Matsumoto, T. (1993). Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Applied and Environmental Microbiology, 93, 1549–1554.

    Google Scholar 

  41. Fu, X. T., Cheol-Ho, P., Hong, L., & Sang, M. K. (2009). Gene cloning, expression, and characterization of a β-Agarase, AgaB34, from Agarivorans albus YKW-34. Journal of Microbiology and Biotechnology, 19(3), 257–264.

    CAS  PubMed  Google Scholar 

  42. Zhu, Y., Zhao, R., Xiao, A., Li, L., Jiang, Z., Chen, F., & Ni, H. (2016). Characterization of an alkaline β-agarase from Stenotrophomonas sp. NTa and the enzymatic hydrolysates. Int. J. Biol. Macromolecules., 86, 525–534.

    Article  CAS  Google Scholar 

  43. Gupta, V., Trivedi, N., Kumar, M., Reddy, C. R. K., & Jha, B. (2013). Purification and characterization of exo-b-agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans. Biomass and Bioenergy, 49, 290–298.

    Article  CAS  Google Scholar 

  44. Jonnadula, R., & Ghadi, C. S. (2011). Purification and characterization of β-agarase from seaweed decomposing bacterium Microbulbifer sp. strain CMC-5. Biotechnology and Bioprocess Engineering, 16(3), 513–519.

    Article  CAS  Google Scholar 

  45. Van der Meulen, H. J., & Harder, W. (1975). Production and characterization of the agarase of Cytoplaga flevensis. Antonie Van Leeuwenhoek, 41(1), 431–447.

    Article  PubMed  Google Scholar 

  46. Lin, B., Lu, G., Zheng, Y., Xie, W., Li, S., & Hu, Z. (2012). Gene cloning, expression and characterization of a neoagarotetraose-producing β-agarase from the marine bacterium Agarivorans sp. HZ105. World Journal of Microbiology and Biotechnology, 28(4), 1691–1697.

    Article  CAS  PubMed  Google Scholar 

  47. Xie, W., Lin, B., Zhou, Z., Lu, G., Lun, J., Xia, C., Li, S., & Hu, Z. (2013). Characterization of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3. Applied Microbiology and Biotechnology, 97(11), 4907–4915.

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki, H., Sawai, Y., Suzuki, T., & Kawai, K. (2003). Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. Journal of Bioscience and Bioengineering, 93, 456–463.

    Article  Google Scholar 

  49. Shi, Y. L., Lu, X. Z., & Yu, W. G. (2008). A new β-agarase from marine bacterium Janthinobacterium sp. SY12. World Journal of Microbiology and Biotechnology, 24(11), 2659–2664.

    Article  CAS  Google Scholar 

  50. Ma, C., Lu, X., Shi, C., Li, J., Gu, Y., Ma, Y., Chu, Y., Han, F., Gong, Q., & Yu, W. (2007). Molecular cloning and characterization of a novel β-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. The Journal of Biological Chemistry, 282(6), 3747–3754.

    Article  CAS  PubMed  Google Scholar 

  51. Kim, J. H., Yun, E. J., Seo, N., Yu, S., Kim, D. H., Cho, K. M., An, H. J., Kim, J. H., Choi, I. G., & Kim, K. H. (2016). Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Applied Microbiology and Biotechnology, 101, 1111–1120.

  52. Liang, Y., Ma, X., Zhang, L., Li, F., Liu, Z., & Mao, X. (2017). Biochemical characterization and substrate degradation mode of a novel exo-type β-agarase from Agarivorans gilvus WH0801. J. Agri. Food Chem., 65(36), 7982–7988.

    Article  CAS  Google Scholar 

  53. Araki, T. Lu, Z. and Morishita, T. (1998) Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). Journal of Marine Biotechnology 6, 193–197, 3.

  54. Michel, G., Nyval-Collen, P., Barbeyron, T., Czjzek, M., & Helbert, W. (2006). Bioconversion of red seaweed galactans, a focus on bacterial agarases and carrageenases. Applied Microbiology and Biotechnology, 71(1), 23–33.

    Article  CAS  PubMed  Google Scholar 

  55. Goh, C. H., & Lee, K. T. (2010). A visionary and conceptual macroalgae based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews, 14(2), 842–848.

    Article  CAS  Google Scholar 

  56. Kim, N. J., Li, H., Jung, K., Chang, H. N., & Lee, P. C. (2011). Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology, 102(16), 7466–7469.

    Article  CAS  PubMed  Google Scholar 

  57. Wu, S. C., & Pan, C. L. (2004). Preparation of algal-oligosaccharide mixtures by bacterial agarases and their antioxidative properties. Fisheries Science, 70(6), 1164–1173.

    Article  CAS  Google Scholar 

  58. Ahola, S., Turon, X., Österberg, M., Laine, J., & Rojas, O. J. (2008). Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films, effect of surface structure. Langmuir, 24(20), 11592–11599.

    Article  CAS  PubMed  Google Scholar 

  59. Ruth, J., & Adhikary, S. P. (2004). Effect of alkali treatment on the yield and quality of agar from red algae Gracilaria verrucosa occurring at different salinity gradient of Chilika lake. Ind. Journal of Marine Science, 33, 202–205.

    Google Scholar 

  60. Khambhaty, Y., Mody, K., Gandhi, M. R., Thampy, S., Maiti, P., Brahmbhatt, H., Eswaran, K., & Ghosh, P. K. (2012). Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology, 103(1), 180–185.

    Article  CAS  PubMed  Google Scholar 

  61. Yanagisawa, M., Nakamura, K., Ariga, O., & Nakasaki, K. (2011). Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry, 46(11), 2111–2116.

    Article  CAS  Google Scholar 

  62. Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients., 2(12), 1231–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director, CSIR-CFTRI for encouragement, and the facilities provided. First author thanks UGC, Govt. of India (Grant No. 1269/NET-June 2011) for the support in the form of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NM Sachindra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leema Roseline, T., Sachindra, N. Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa. Appl Biochem Biotechnol 186, 66–84 (2018). https://doi.org/10.1007/s12010-018-2726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2726-2

Keywords

Navigation