Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 2, pp 384–399 | Cite as

Co-addition Strategy for Enhancement of Chaetominine from Submerged Fermentation of Aspergillus fumigatus CY018

  • Chang-Qing Liu
  • Zheng-Hua Pan
  • Fa-Liang An
  • Yan-Hua Lu
Article
  • 74 Downloads

Abstract

Chaetominine (CHA), a novel framework tripeptide alkaloid, imparts an attractive cytotoxic against the human leukemia cell line K562, which is produced by Aspergillus fumigatus CY018. However, its pharmacological research is restricted by low yields in submerged culture, which needs to be resolved immediately by biotechnology. In this work, a co-addition strategy was applied to promote CHA production based on related inhibitors’ addition and precursors’ addition, inspired by the biosynthetic pathway analysis of CHA. CHA production reached 53.87 mg/L by addition of 10 mM shikimate, 10 mM anthranilate, 20 mM tryptophan, and 10 mM alanine in shake flask. Compared to the control without addition of precursors, the activity of 3-deoxy-arabino-heptulosonate-7-phospahte (DAHP) synthase was significantly improved and the transcription levels of critical genes in shikimate pathway were up-regulated responded to the co-addition of precursors. The improvement of CHA production by co-addition of precursors was also successfully reproduced in the lab-scale bioreactor (5-L) system, in which CHA production reached 46.10 mg/L. This work demonstrated that precursors’ co-addition was an effective strategy for increasing CHA production, and the information obtained might be useful to the further improvement of CHA on a large scale.

Keywords

Chaetominine Aspergillus fumigatus Shikimate pathway Co-addition strategy Submerged fermentation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81741156), the Shanghai Sailing Program (17YF1403700), and the National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2714_MOESM1_ESM.docx (308 kb)
ESM 1 (DOCX 308 kb)

References

  1. 1.
    Liu, J. Y., Song, Y. C., Zhang, Z., Wang, L., Guo, Z. J., Zou, W. X., & Tan, R. X. (2004). Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. Journal of Biotechnology, 114(3), 279–287.CrossRefGoogle Scholar
  2. 2.
    Jiao, R. H., Xu, S., Liu, J. Y., Ge, H. M., Ding, H., Xu, C., Zhu, H. L., & Tan, R. X. (2006). Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp. IFB-E015. Organic Letters., 8(25), 5709–5712.CrossRefGoogle Scholar
  3. 3.
    Yao, J. Y., Jiao, R. H., Liu, C. Q., Zhang, Y. P., Yu, W. G., Lu, Y. H., & Tan, R. X. (2016). Assessment of the cytotoxic and apoptotic effects of chaetominine in a human leukemia cell line. Biomolecules & Therapeutics, 24(2), 147–155.CrossRefGoogle Scholar
  4. 4.
    Gui, R. Y., Xu, L., Kuang, Y., Chung, L. M., Qin, J. C., Liu, L., Yang, S. X., & Zhao, L. C. (2015). Chaetominine, (+)-alantrypinone, questin, isorhodoptilometrin, and 4-hydroxybenzaldehyde produced by the endophytic fungus Aspergillus sp. YL-6 inhibit wheat (Triticum aestivum) and radish (Raphanus sativus) germination. Journal of Plant Interactions, 10, 87–92.CrossRefGoogle Scholar
  5. 5.
    Toumi, M., Couty, F., Marrot, J., & Evano, G. (2008). Total synthesis of chaetominine. Organic Letters, 10(21), 5027–5030.CrossRefGoogle Scholar
  6. 6.
    Kshirsagar, U. A. (2015). Recent developments in the chemistry of quinazolinone alkaloids. Organic & Biomolecular Chemistry, 13(36), 9336–9352.CrossRefGoogle Scholar
  7. 7.
    Elfie, S. W. (2008). Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Natural Product Reports, 25, 188–200.CrossRefGoogle Scholar
  8. 8.
    Kang, Z., Zhang, C. Z., Du, G. C., & Chen, J. (2014). Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Applied Biochemistry and Biotechnology, 172(4), 2012–2021.CrossRefGoogle Scholar
  9. 9.
    Liu, S. P., Xiao, M. R., Zhang, L., Xu, J., Ding, Z. Y., Gu, Z. H., & Shi, G. Y. (2013). Production of l-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochemistry, 48(3), 413–419.CrossRefGoogle Scholar
  10. 10.
    Song, E. S., Park, Y. J., Noh, T. H., Kim, Y. T., Kim, J. G., Cho, H., & Lee, B. M. (2012). Functional analysis of the aroC gene encoding chorismate synthase from Xanthomonas oryzae pathovar oryzae. Microbiological Research, 167(6), 326–331.CrossRefGoogle Scholar
  11. 11.
    Wang, P. M., Choera, T., Wiemann, P., Pisithkul, T., Noguez, D. A., & Keller, N. P. (2016). TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genetics and Biology., 89, 102–113.CrossRefGoogle Scholar
  12. 12.
    Lee, S. H., Baek, K., Lee, J. E., & Kim, B. G. (2016). Using tyrosinase as a monophenol monooxygenase: a combined strategy for effective inhibition of melanin formation. Biotechnology and Bioengineering, 113(4), 735–743.CrossRefGoogle Scholar
  13. 13.
    Mao, X. Z., Wang, F., Zhang, J. G., Chen, S., Deng, Z. X., Shen, Y. L., & Wei, D. Z. (2009). The pH shift and precursor feeding strategy in a low-toxicity FR-008/Candicidin derivative CS103 fermentation bioprocess by a mutant of Streptomyces sp. FR-008. Applied Biochemistry and Biotechnology, 159(3), 673–686.CrossRefGoogle Scholar
  14. 14.
    Han, Y. S., Heijden, R. V. D., & Verpoorte, R. (2002). Improved anthraquinone accumulation in cell cultures of Cinchona ‘Robusta’ by feeding of biosynthetic precursors and inhibitors. Biotechnology Letters, 24(9), 705–710.CrossRefGoogle Scholar
  15. 15.
    Liu, C. Q., Jiao, R. H., Yao, L. Y., Zhang, Y. P., Lu, Y. H., & Tan, R. X. (2016). Adsorption characteristics and preparative separation of chaetominine from Aspergillus fumigatus mycelia by macroporousresin. Journal of Chromatography B., 1015, 135–141.CrossRefGoogle Scholar
  16. 16.
    Mori, T., Sakurai, M., & Sakuta, M. (2001). Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Science, 160(2), 355–360.CrossRefGoogle Scholar
  17. 17.
    Li, S. B., Liu, L. M., & Chen, J. (2015). Mitochondrial fusion and fission are involved in stress tolerance of Candida glabrata. Bioresoures and Bioprocessing, 2, 12–20.CrossRefGoogle Scholar
  18. 18.
    Le, T. C., Yang, I., Yoon, Y. J., Nam, S. J., & Fenical, W. (2016). Ansalactams B−D illustrate further biosynthetic plasticity within the ansamycin pathway. Organic Letters, 18(9), 2256–2259.CrossRefGoogle Scholar
  19. 19.
    Singh, S. K., & Pandey, A. (2013). Emerging approaches in fermentative production of statins. Applied Biochemistry and Biotechnology, 171(4), 927–938.CrossRefGoogle Scholar
  20. 20.
    Buhaescu, I., & Izzedine, H. (2007). Mevalonate pathway: a review of clinical and therapeutical implications. Clinical Biochemistry, 40(9-10), 575–584.CrossRefGoogle Scholar
  21. 21.
    Sun, X. Q., Zhou, X. S., Cai, M. H., Tao, K. J., & Zhang, Y. X. (2009). Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Bioresource Technology, 100(18), 4244–4251.CrossRefGoogle Scholar
  22. 22.
    Zhang, K., Li, H. D., Chen, W. X., Zhao, M. L., Cui, H. Y., Min, Q. S., Wang, H. J., Chen, S. L., & Li, D. M. (2017). Regulation of the docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium limacinum B4D1. Applied Biochemistry and Biotechnology, 182(1), 67–81.CrossRefGoogle Scholar
  23. 23.
    Eckermann, C., Matthes, B., Nimtz, M., Reiser, V., Lederer, B., Boger, P., & Schroder, J. (2003). Covalent binding of chloroacetamide herbicides to the active site cysteine of plant type III polyketide synthases. Phytochemistry, 64(6), 1045–1054.CrossRefGoogle Scholar
  24. 24.
    Leonard, E., Yan, Y. J., Fowler, Z. L., Li, Z., Lim, C. G., Lim, K. H., & Koffas, M. A. G. (2008). Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Molecular Pharmaceutics, 5(2), 257–265.CrossRefGoogle Scholar
  25. 25.
    Niu, C. P., Cai, M. H., Zhang, Y. X., & Zhou, X. S. (2012). Biosynthetic origin of the carbon skeleton of a novel anti-tumor compound, haloroquinone, from a marine-derived fungus, Halorosellinia sp. Biotechnology Letters, 34(11), 2119–2124.CrossRefGoogle Scholar
  26. 26.
    Iddar, A., Valverde, F., Serrano, A., & Soukri, A. (2003). Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Molecular and Cellular Biochemistry, 247, 195–203.CrossRefGoogle Scholar
  27. 27.
    Knaggs, A. R. (2003). The biosynthesis of shikimate metabolites. Natural Product Reports, 20(1), 119–136.CrossRefGoogle Scholar
  28. 28.
    Maeda, H., & Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant and Biology., 63(1), 73–105.CrossRefGoogle Scholar
  29. 29.
    Kramer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M., & Raeven, L. (2003). Metabolic engineering for microbial production of shikimic acid. Metabolic Engineering, 5(4), 277–283.CrossRefGoogle Scholar
  30. 30.
    Hertweck, C. (2009). The biosynthetic logic of polyketide diversity. Angewandte Chemie-International Edition., 48(26), 4688–4716.CrossRefGoogle Scholar
  31. 31.
    Zhao, M. J., Fan, Y. X., Wei, L. J., Hu, F. X., & Hua, Q. (2017). Effects of the methylmalonyl-CoA metabolic pathway on ansamitocin production in Actinosynnema pretiosum. Applied Biochemistry and Biotechnology, 181(3), 1167–1178.CrossRefGoogle Scholar
  32. 32.
    Yolande, A. C., Angela, M. P., Brian, M. K., & Michael, G. T. (2009). Biosynthesis of polyketide synthase extender units. Natural Product Reports, 26, 90–114.CrossRefGoogle Scholar
  33. 33.
    Verma, P., Khan, S. A., Mathur, A. K., Ghosh, S., Shanker, K., & Kalra, A. (2014). Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma, 251(6), 1359–1371.CrossRefGoogle Scholar
  34. 34.
    Zhao, J., & Verpoorte, R. (2007). Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochemistry Reviews, 6(2-3), 435–457.CrossRefGoogle Scholar
  35. 35.
    Chamlagain, B., Deptula, P., Edelmann, M., Kariluoto, S., Grattepanche, F., Lacroix, C., Varmanen, P., & Piironen, V. (2016). Effect of the lower ligand precursors on vitamin B12 production by food-grade Propionibacteria. LWT-Food Science and Technology, 72, 117–124.CrossRefGoogle Scholar
  36. 36.
    Sun, X. Q., Zhou, X. S., Cai, M. H., Zhou, J. S., & Zhang, Y. X. (2010). Significant stimulation of o-phthalic acid in biosynthesis of aspergiolide A by a marine fungus Aspergillus glaucus. Bioresource Technology, 101(10), 3609–3616.CrossRefGoogle Scholar
  37. 37.
    Zhao, Z. J., Zou, C., Zhu, Y. X., Dai, J., Chen, S., Wu, D., Wu, J., & Chen, J. (2011). Development of L-tryptophan production strains by defined genetic modification in Escherichia coli. Journal of Industrial Microbiology & Biotechnology., 38(12), 1921–1929.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chang-Qing Liu
    • 1
  • Zheng-Hua Pan
    • 1
  • Fa-Liang An
    • 1
  • Yan-Hua Lu
    • 1
  1. 1.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations