Skip to main content

Advertisement

Log in

Cloning and Characterization of the Gene Encoding Alpha-Pinene Oxide Lyase Enzyme (Prα-POL) from Pseudomonas rhodesiae CIP 107491 and Production of the Recombinant Protein in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The alpha-pinene oxide lyase (Prα-POL) from Pseudomonas rhodesiae CIP107491 belongs to catabolic alpha-pinene degradation pathway. In this study, the gene encoding Prα-POL has been identified using mapping approach combined to inverse PCR (iPCR) strategy. The Prα-POL gene included a 609-bp open reading frame encoding 202 amino acids and giving rise to a 23.7 kDa protein, with a theoretical isoelectric point (pI) of 5.23. The amino acids sequence analysis showed homologies with those of proteins with unknown function from GammaProteobacteria group. Identification of a conserved domain in amino acid in positions 18 to 190 permitted to classify Prα-POL among the nuclear transport factor 2 (NTF2) protein superfamily. Heterologous expression of Prα-POL, both under its native form and with a histidin tag, was successfully performed in Escherichia coli, and enzymatic kinetics were analyzed. Bioconversion assay using recombinant E. coli strain allowed to reach a rate of isonovalal production per gramme of biomass about 40-fold higher than the rate obtained with P. rhodesiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Gibbon, G. H., & Pirt, S. J. (1971). Degradation of α-pinene by Pseudomonas PX1. FEBS Letters, 18(1), 103–105. https://doi.org/10.1016/0014-5793(71)80418-0.

    Article  CAS  Google Scholar 

  2. Wright, S. J., Caunt, P., Carter, D., & Baker, P. B. (1986). Microbial oxidation of alpha-pinene by Serratia marcescens. Applied Microbiology and Biotechnology, 23, 224–227.

    Article  CAS  Google Scholar 

  3. Griffith, E. T., Bociek, S. M., Harries, P. C., Jeffcoat, R., Sissous, D. J., & Trudgill, P. W. (1987a). Bacterial metabolism of α-pinene: pathway from α-pinene oxide to acyclic metabolics in Nocardia sp. strain P18.3. Journal of Bacteriology, 169(11), 4972–4979. https://doi.org/10.1128/jb.169.11.4972-4979.1987.

    Article  Google Scholar 

  4. Trudgill, P.W. (1994). Microbial metabolism and transformation of selected monoterpenes. In Biochemistry of microbial degradation (Ratledge, C. ed.), p.33–61.

  5. Best, D. J., Floyd, N. C., Magalhaes, A., Burfield, A., & Rhodes, P. M. (1987). Initial enzymatic steps in the degradation of alpha-pinene by Pseudomonas fluorescens NCIMB 11671. Biocatalysis, 1(2), 147–159. https://doi.org/10.3109/10242428709040139.

    Article  CAS  Google Scholar 

  6. Fontanille, P., Le Fleche, A., & Larroche, C. (2002). Pseudomonas rhodesiae PF1: a new efficient biocatalyst for production of isonovalal from α-pinene oxide. Biocatalysis and Biotransformation, 20(6), 413–421. https://doi.org/10.1080/1024242021000058702.

    Article  CAS  Google Scholar 

  7. Tudroszen, N. J., Kelly, D. P., & Millis, N. F. (1977). α-pinene metabolism by Pseudomonas putida. The Biochemical Journal, 168, 312–318.

    Article  Google Scholar 

  8. Fontanille, P., & Larroche, C. (2003). Optimization of isonovalal production from α-pinene oxide using permeabilized cells of Pseudomona rhodesiae CIP 107491. Applied Microbiology and Biotechnology, 60(5), 534–540. https://doi.org/10.1007/s00253-002-1164-8.

    Article  CAS  Google Scholar 

  9. Linares, D., Martinez, D., Fontanille, P., & Larroche, C. (2008). Production of trans-2-methyl-5-isopropylhexa-2,5-dienoic acid by Pseudomonas rhodesiae CIP 107491. Bioresource Technology, 99(11), 4590–4596. https://doi.org/10.1016/j.biortech.2007.07.029.

    Article  CAS  Google Scholar 

  10. Griffith, E. T., Harries, P. C., Jeffcoat, R., & Trudgill, P. W. (1987b). Purification and properties of α-pinene oxide lyase from Nocardia sp. Strain P18.3. Journal of Bacteriology, 169(11), 4980–4983. https://doi.org/10.1128/jb.169.11.4980-4983.1987.

    Article  Google Scholar 

  11. Laroche, C., Fontanille, P. and Larroche C. (2006). Purification of α-pinene oxide lyase from Pseudomonas rhodesiae Cip 107491. In Current topics on bioprocess in food industry (Asiatech New Dehli ed.), pp 98–108.

  12. Bell, S. G., Xuehui, C., Sowden, R. J., Xu, F., Williams, J. N., Wong, L., & Rao, Z. (2002). Molecular recognition in (+)-α-pinene oxidation by cytochrome P450cam. Journal of the American Chemical Society, 125, 705–714.

    Article  Google Scholar 

  13. Lentz, O., Li, Q. S., Schwaneberg, U., Lutz-Wahl, S., Fischer, P., & Schmid, R. D. (2001). Modification of the fatty acid specificity of cytochrome P450cam from Bacillus megaterium by directed evolution: a validated assy. Journal of Molecular Catalysis B: Enzymatic, 15(4-6), 123–133. https://doi.org/10.1016/S1381-1177(01)00015-7.

    Article  CAS  Google Scholar 

  14. Schewe, H., Kaup, B. A., & Schrader, J. (2008). Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combinig glucose facilitator and dehydrogenase in E.coli. Applied Microbiology and Biotechnology, 78(1), 55–65. https://doi.org/10.1007/s00253-007-1277-1.

    Article  CAS  Google Scholar 

  15. Schewe, H., Holtmann, D., & Schrader, J. (2009). P450BM-3 catalyzed whole-cell biotransformation of α-pinene with recombinant Escherichia coli in a aqueous-organic two-phase system. Applied Microbiology and Biotechnology, 83(5), 849–857. https://doi.org/10.1007/s00253-009-1917-8.

    Article  CAS  Google Scholar 

  16. Cohen-Bazire, G., Sistrom, W. R., & Steiner, R. Y. (1957). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. Journal of Cellular and Comparative Physiology, 44, 25–68.

    Article  Google Scholar 

  17. Kim, M. K., Kim, Y. J., Cho, D. H., Yi, T. H., Soung, N. K., & Yang, D. C. (2007). Solimonas soli gen. nov., sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and Evolutionary Microbiology, 57(11), 2591–2594. https://doi.org/10.1099/ijs.0.64938-0.

    Article  CAS  Google Scholar 

  18. Achterholt, S., Priefert, H., & Steinbückel, A. (1998). Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene. Journal of Bacteriology, 180(17), 4387–4391.

    Article  CAS  Google Scholar 

  19. Santos, P. M., Mignogna, G., Heipieper, H. J., & Zennaro, E. (2002). Occurrence and properties of glutathione S-transferases in phenol-degrading Pseudomonas strains. Research in Microbiology, 153(2), 89–98. https://doi.org/10.1016/S0923-2508(01)01293-1.

    Article  CAS  Google Scholar 

  20. Eberhardt, R. Y., Chang, Y., Bateman, A., Murzin, A. G., Axelrod, H. L., Hwang, W. C., & Araving, L. (2013). Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics, 14(1), 327–338. https://doi.org/10.1186/1471-2105-14-327.

    Article  Google Scholar 

  21. Bullock, T. L., Clarkson, W. D., Kent, H. M., & Stewart, M. (1996). The 1.6 angstroms resolution crystal structure of nuclear transport 2 (NTF2). Journal of Molecular Biology, 260(3), 422–431. https://doi.org/10.1006/jmbi.1996.0411.

    Article  CAS  Google Scholar 

  22. Bayliss, R., Leung, S. W., Baker, R. P., Quimby, B. B., Corbett, A. H., & Stewart, M. (2002). Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. The EMBO Journal, 21(12), 2843–2853. https://doi.org/10.1093/emboj/cdf305.

    Article  CAS  Google Scholar 

  23. Steggerda, S. M., & Paschal, B. M. (2002). Regulation of nuclear import and export by the GTPase. Ran. Int. Rev. Cyto., 217, 41–91. https://doi.org/10.1016/S0074-7696(02)17012-4.

    Article  CAS  Google Scholar 

  24. Lundqvist, T., Rice, J., Hodge, C. N., Basarab, G. S., Pierce, J., & Lindqvist, Y. (1994). Crystal structure of scytalone dehydratase - a disease determinant of the rice pathogen Magnaporthe grisea. Structure, 2(10), 937–944. https://doi.org/10.1016/S0969-2126(94)00095-6.

    Article  CAS  Google Scholar 

  25. Butler, M. J., Gardiner, R. B., & DAY, A. W. (2009). Melanin synthesis by Sclerotinia sclerotiorium. Mycologia, 101(3), 296–301. https://doi.org/10.3852/08-120.

    Article  CAS  Google Scholar 

  26. Simard, J., Ricketts, M. L., Gingras, S., Soucy, P., Feltus, F. A., & Melner, M. H. (2005). Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocrine Reviews, 26(4), 525–582. https://doi.org/10.1210/er.2002-0050.

    Article  CAS  Google Scholar 

  27. Talalay, P., Dobson, M. M., & Tapley, D. F. (1952). Oxydative degradation of testosterone by adaptative enzyme. Nature, 170(4328), 620–621. https://doi.org/10.1038/170620a0.

    Article  CAS  Google Scholar 

  28. Van der Werf, M. J., Overkamp, K. M., & De Bont, J. A. (1988). Limoneme-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolase. Journal of Bacteriology, 180, 5052–5057.

    Article  Google Scholar 

  29. Griffith, L. C., Lu, C. S., & Sun, X. X. (2003). CaMKII, an enzyme on the move: regulation of temporospatial localization. Molecular Interventions, 3(7), 386–403. https://doi.org/10.1124/mi.3.7.386.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants of Ministère de la Recherche et de l’Enseignement Supérieur. This study was developed in partnership with students of the Engineering School of Polytech’Clermont-Ferrand at University of Clermont-Auvergne (UCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Dubessay.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubessay, P., Larroche, C. & Fontanille, P. Cloning and Characterization of the Gene Encoding Alpha-Pinene Oxide Lyase Enzyme (Prα-POL) from Pseudomonas rhodesiae CIP 107491 and Production of the Recombinant Protein in Escherichia coli. Appl Biochem Biotechnol 185, 676–690 (2018). https://doi.org/10.1007/s12010-017-2685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2685-z

Keywords