Abstract
The alpha-pinene oxide lyase (Prα-POL) from Pseudomonas rhodesiae CIP107491 belongs to catabolic alpha-pinene degradation pathway. In this study, the gene encoding Prα-POL has been identified using mapping approach combined to inverse PCR (iPCR) strategy. The Prα-POL gene included a 609-bp open reading frame encoding 202 amino acids and giving rise to a 23.7 kDa protein, with a theoretical isoelectric point (pI) of 5.23. The amino acids sequence analysis showed homologies with those of proteins with unknown function from GammaProteobacteria group. Identification of a conserved domain in amino acid in positions 18 to 190 permitted to classify Prα-POL among the nuclear transport factor 2 (NTF2) protein superfamily. Heterologous expression of Prα-POL, both under its native form and with a histidin tag, was successfully performed in Escherichia coli, and enzymatic kinetics were analyzed. Bioconversion assay using recombinant E. coli strain allowed to reach a rate of isonovalal production per gramme of biomass about 40-fold higher than the rate obtained with P. rhodesiae.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Gibbon, G. H., & Pirt, S. J. (1971). Degradation of α-pinene by Pseudomonas PX1. FEBS Letters, 18(1), 103–105. https://doi.org/10.1016/0014-5793(71)80418-0.
Wright, S. J., Caunt, P., Carter, D., & Baker, P. B. (1986). Microbial oxidation of alpha-pinene by Serratia marcescens. Applied Microbiology and Biotechnology, 23, 224–227.
Griffith, E. T., Bociek, S. M., Harries, P. C., Jeffcoat, R., Sissous, D. J., & Trudgill, P. W. (1987a). Bacterial metabolism of α-pinene: pathway from α-pinene oxide to acyclic metabolics in Nocardia sp. strain P18.3. Journal of Bacteriology, 169(11), 4972–4979. https://doi.org/10.1128/jb.169.11.4972-4979.1987.
Trudgill, P.W. (1994). Microbial metabolism and transformation of selected monoterpenes. In Biochemistry of microbial degradation (Ratledge, C. ed.), p.33–61.
Best, D. J., Floyd, N. C., Magalhaes, A., Burfield, A., & Rhodes, P. M. (1987). Initial enzymatic steps in the degradation of alpha-pinene by Pseudomonas fluorescens NCIMB 11671. Biocatalysis, 1(2), 147–159. https://doi.org/10.3109/10242428709040139.
Fontanille, P., Le Fleche, A., & Larroche, C. (2002). Pseudomonas rhodesiae PF1: a new efficient biocatalyst for production of isonovalal from α-pinene oxide. Biocatalysis and Biotransformation, 20(6), 413–421. https://doi.org/10.1080/1024242021000058702.
Tudroszen, N. J., Kelly, D. P., & Millis, N. F. (1977). α-pinene metabolism by Pseudomonas putida. The Biochemical Journal, 168, 312–318.
Fontanille, P., & Larroche, C. (2003). Optimization of isonovalal production from α-pinene oxide using permeabilized cells of Pseudomona rhodesiae CIP 107491. Applied Microbiology and Biotechnology, 60(5), 534–540. https://doi.org/10.1007/s00253-002-1164-8.
Linares, D., Martinez, D., Fontanille, P., & Larroche, C. (2008). Production of trans-2-methyl-5-isopropylhexa-2,5-dienoic acid by Pseudomonas rhodesiae CIP 107491. Bioresource Technology, 99(11), 4590–4596. https://doi.org/10.1016/j.biortech.2007.07.029.
Griffith, E. T., Harries, P. C., Jeffcoat, R., & Trudgill, P. W. (1987b). Purification and properties of α-pinene oxide lyase from Nocardia sp. Strain P18.3. Journal of Bacteriology, 169(11), 4980–4983. https://doi.org/10.1128/jb.169.11.4980-4983.1987.
Laroche, C., Fontanille, P. and Larroche C. (2006). Purification of α-pinene oxide lyase from Pseudomonas rhodesiae Cip 107491. In Current topics on bioprocess in food industry (Asiatech New Dehli ed.), pp 98–108.
Bell, S. G., Xuehui, C., Sowden, R. J., Xu, F., Williams, J. N., Wong, L., & Rao, Z. (2002). Molecular recognition in (+)-α-pinene oxidation by cytochrome P450cam. Journal of the American Chemical Society, 125, 705–714.
Lentz, O., Li, Q. S., Schwaneberg, U., Lutz-Wahl, S., Fischer, P., & Schmid, R. D. (2001). Modification of the fatty acid specificity of cytochrome P450cam from Bacillus megaterium by directed evolution: a validated assy. Journal of Molecular Catalysis B: Enzymatic, 15(4-6), 123–133. https://doi.org/10.1016/S1381-1177(01)00015-7.
Schewe, H., Kaup, B. A., & Schrader, J. (2008). Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combinig glucose facilitator and dehydrogenase in E.coli. Applied Microbiology and Biotechnology, 78(1), 55–65. https://doi.org/10.1007/s00253-007-1277-1.
Schewe, H., Holtmann, D., & Schrader, J. (2009). P450BM-3 catalyzed whole-cell biotransformation of α-pinene with recombinant Escherichia coli in a aqueous-organic two-phase system. Applied Microbiology and Biotechnology, 83(5), 849–857. https://doi.org/10.1007/s00253-009-1917-8.
Cohen-Bazire, G., Sistrom, W. R., & Steiner, R. Y. (1957). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. Journal of Cellular and Comparative Physiology, 44, 25–68.
Kim, M. K., Kim, Y. J., Cho, D. H., Yi, T. H., Soung, N. K., & Yang, D. C. (2007). Solimonas soli gen. nov., sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and Evolutionary Microbiology, 57(11), 2591–2594. https://doi.org/10.1099/ijs.0.64938-0.
Achterholt, S., Priefert, H., & Steinbückel, A. (1998). Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene. Journal of Bacteriology, 180(17), 4387–4391.
Santos, P. M., Mignogna, G., Heipieper, H. J., & Zennaro, E. (2002). Occurrence and properties of glutathione S-transferases in phenol-degrading Pseudomonas strains. Research in Microbiology, 153(2), 89–98. https://doi.org/10.1016/S0923-2508(01)01293-1.
Eberhardt, R. Y., Chang, Y., Bateman, A., Murzin, A. G., Axelrod, H. L., Hwang, W. C., & Araving, L. (2013). Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics, 14(1), 327–338. https://doi.org/10.1186/1471-2105-14-327.
Bullock, T. L., Clarkson, W. D., Kent, H. M., & Stewart, M. (1996). The 1.6 angstroms resolution crystal structure of nuclear transport 2 (NTF2). Journal of Molecular Biology, 260(3), 422–431. https://doi.org/10.1006/jmbi.1996.0411.
Bayliss, R., Leung, S. W., Baker, R. P., Quimby, B. B., Corbett, A. H., & Stewart, M. (2002). Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. The EMBO Journal, 21(12), 2843–2853. https://doi.org/10.1093/emboj/cdf305.
Steggerda, S. M., & Paschal, B. M. (2002). Regulation of nuclear import and export by the GTPase. Ran. Int. Rev. Cyto., 217, 41–91. https://doi.org/10.1016/S0074-7696(02)17012-4.
Lundqvist, T., Rice, J., Hodge, C. N., Basarab, G. S., Pierce, J., & Lindqvist, Y. (1994). Crystal structure of scytalone dehydratase - a disease determinant of the rice pathogen Magnaporthe grisea. Structure, 2(10), 937–944. https://doi.org/10.1016/S0969-2126(94)00095-6.
Butler, M. J., Gardiner, R. B., & DAY, A. W. (2009). Melanin synthesis by Sclerotinia sclerotiorium. Mycologia, 101(3), 296–301. https://doi.org/10.3852/08-120.
Simard, J., Ricketts, M. L., Gingras, S., Soucy, P., Feltus, F. A., & Melner, M. H. (2005). Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocrine Reviews, 26(4), 525–582. https://doi.org/10.1210/er.2002-0050.
Talalay, P., Dobson, M. M., & Tapley, D. F. (1952). Oxydative degradation of testosterone by adaptative enzyme. Nature, 170(4328), 620–621. https://doi.org/10.1038/170620a0.
Van der Werf, M. J., Overkamp, K. M., & De Bont, J. A. (1988). Limoneme-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolase. Journal of Bacteriology, 180, 5052–5057.
Griffith, L. C., Lu, C. S., & Sun, X. X. (2003). CaMKII, an enzyme on the move: regulation of temporospatial localization. Molecular Interventions, 3(7), 386–403. https://doi.org/10.1124/mi.3.7.386.
Funding
This work was supported by grants of Ministère de la Recherche et de l’Enseignement Supérieur. This study was developed in partnership with students of the Engineering School of Polytech’Clermont-Ferrand at University of Clermont-Auvergne (UCA).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no competing interests.
Ethics Statement
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Dubessay, P., Larroche, C. & Fontanille, P. Cloning and Characterization of the Gene Encoding Alpha-Pinene Oxide Lyase Enzyme (Prα-POL) from Pseudomonas rhodesiae CIP 107491 and Production of the Recombinant Protein in Escherichia coli. Appl Biochem Biotechnol 185, 676–690 (2018). https://doi.org/10.1007/s12010-017-2685-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-017-2685-z


