Skip to main content
Log in

Production of FAME and FAEE via Alcoholysis of Sunflower Oil by Eversa Lipases Immobilized on Hydrophobic Supports

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The performance of two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 immobilized in different supports was investigated. The two lipases were adsorbed on four different hydrophobic supports. Interesting results were obtained for both lipases and for the four supports. However, the most active derivative was prepared by immobilization of Eversa® Transform 2.0 on Sepabeads C-18. Ninety-nine percent of fatty acid ethyl ester was obtained, in 3 h at 40 °C, by using hexane as solvent, a molar ratio of 4:1 (ethanol/oil), and 10 wt% of immobilized biocatalyst. The final reaction mixture contained traces of monoacylglycerols but was completely free of diacylglycerols. After four reaction cycles, the immobilized biocatalyst preserved 75% of activity. Both lipases immobilized in Sepabeads C-18 were very active with ethanol and methanol as acceptors, but they were much more stable in the presence of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bi, Y., Yu, M., Zhou, H., & Wei, P. (2016). Biosynthesis of oleyl oleate in solvent-free system by Candida rugosa lipase (CRL) immobilized in macroporous resin with cross-linking of aldehyde-dextran. Journal of Molecular Catalysis B: Enzymatic, 133, 1–5. https://doi.org/10.1016/j.molcatb.2016.05.002.

    Article  CAS  Google Scholar 

  2. Isano, Y., Nakajima, M., & Nabetani, H. (1996). Solvent-free esterification of oleic acid and oleyl alcohol using membrane reactor and lipase–surfactant complex. Journal of Fermentation and Bioengineering, 86, 138–140.

    Article  Google Scholar 

  3. Kareem, S. O., Falokun, E. I., Balogun, S. A., Akinloye, Omeike, S. O. (2016). Enzymatic biodiesel production from palm oil and palm kernel oil using free lipase. Egyptian Journal of Petroleum, 26(3), 1–8. https://doi.org/10.1016/j.ejpe.2016.09.002.

  4. Akoh, C. C., Chang, S. W., Lee, G. C., & Shaw, J. F. (2007). Enzymatic approach to biodiesel production. Journal of Agricultural and Food Chemistry, 55(22), 8995–9005. https://doi.org/10.1021/jf071724y.

    Article  CAS  Google Scholar 

  5. Tanasković, S. J., Jokić, B., Grbavčić, S., Drvenica, I., Prlainović, N., Luković, N., & Knežević-Jugović, Z. (2017). Immobilization of Candida antarctica lipase B on kaolin and its application in synthesis of lipophilic antioxidants. Applied Clay Science, 135, 103–111. https://doi.org/10.1016/j.clay.2016.09.011.

    Article  Google Scholar 

  6. Gao, J., Kong, W., Zhou, L., & He, Y. (2017). Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chemical Engineering Journal, 309, 70–79. https://doi.org/10.1016/j.cej.2016.10.021.

    Article  CAS  Google Scholar 

  7. Li, X., Zhu, H., Feng, J., Zhang, J., Deng, X., Zhou, B., Zhang, J., Xue, D., Li, F., Mellors, J. M., Li, J., & Peng, Y. (2013). One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon, 60, 488–497. https://doi.org/10.1016/j.carbon.2013.04.068.

    Article  CAS  Google Scholar 

  8. Hartmann, M., & Jung, D. (2010). Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. Journal of Materials Chemistry, 20(5), 844–857. https://doi.org/10.1039/B907869J.

    Article  CAS  Google Scholar 

  9. García, J., Zhang, Y., Taylor, H., Cespedes, O., Webb, M. E., & Zhou, D. (2011). Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale, 3(9), 3721–3730. https://doi.org/10.1039/c1nr10411j.

    Article  Google Scholar 

  10. Zaks, A., & Klibanov, A. M. (1984). Enzymatic catalysis in organic media at 100 °C. Science, 224(4654), 1249–1255. https://doi.org/10.1126/science.6729453.

    Article  CAS  Google Scholar 

  11. Idris, A., & Bukhari, A. (2012). Immobilized Candida antarctica lipase B: hydration, stripping off and application in ring opening polyester synthesis. Biotechnology Advances, 30(3), 550–563. https://doi.org/10.1016/j.biotechadv.2011.10.002.

    Article  CAS  Google Scholar 

  12. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Review. Enzyme and Microbial Technology, 40(6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018.

    Article  CAS  Google Scholar 

  13. Vescovi, V., Kopp, W., Guisán, J. M., Giordano, R. L. C., Mendes, A. A., & Tardioli, P. W. (2016). Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino-glutaraldehyde spacer arms. Process Biochemistry, 51(12), 2055–2066. https://doi.org/10.1016/j.procbio.2016.09.016.

    Article  CAS  Google Scholar 

  14. Fernandez-Lorente, G., Cabrera, Z., Godoy, C., Fernandez-Lafuente, R., Palomo, J. M., & Guisan, J. M. (2008). Interfacially activated lipases against hydrophobic supports: effect of the support nature on the biocatalytic properties. Process Biochemistry, 43(10), 1061–1067. https://doi.org/10.1016/j.procbio.2008.05.009.

    Article  CAS  Google Scholar 

  15. Fernandez-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., & Guisan, J. M. (1998). Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 93(1-2), 185–197. https://doi.org/10.1016/S0009-3084(98)00042-5.

    Article  CAS  Google Scholar 

  16. Virgen-Ortíz, J. J., Tacias-Pascacio, V. G., Hirata, D. B., Torrestiana-Sanchez, B., Rosales-Quintero, A., & Fernandez-Lafuente, R. (2017). Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports. Enzyme and Microbial Technology, 96, 30–35. https://doi.org/10.1016/j.enzmictec.2016.09.010.

    Article  Google Scholar 

  17. Adlercreutz, P. (2013). Immobilization and application of lipases in organic media. Chemical Society Reviews, 42(15), 6406–6436. https://doi.org/10.1039/c3cs35446f.

    Article  CAS  Google Scholar 

  18. Lee, D. G., Ponvel, K. M., Kim, M., Hwang, S., Ahn, I. S., & Lee, C. H. (2009). Immobilization of lipase on hydrophobic nano-sized magnetite particles. Journal of Molecular Catalysis B: Enzymatic, 57(1-4), 62–66. https://doi.org/10.1016/j.molcatb.2008.06.017.

    Article  CAS  Google Scholar 

  19. Blanco, R. M., Terreros, P., Fernández-Pérez, M., Otero, C., & Díaz-González, G. (2004). Functionalization of mesoporous silica for lipase immobilization: characterization of the support and the catalysts. Journal of Molecular Catalysis B: Enzymatic, 30(2), 83–93. https://doi.org/10.1016/j.molcatb.2004.03.012.

    Article  CAS  Google Scholar 

  20. Bastida, A., Sabuquillo, P., Armisen, P., Fernández-Lafuente, R., Huguet, J., & Guisan, J. M. (1998). A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology Bioengineering, 58(5), 486–493. https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. American Chemical Society Catalysis, 5, 4503–4513.

    Google Scholar 

  22. Virgen-Ortíz, J. J., & Fernandez-Lafuente, R. (2016). Stabilization of Candida antarctica lipase B (CALB) immobilized on octyl agarose by treatment with polyethyleneimine (PEI). Molecules, 21, 751–764.

    Article  Google Scholar 

  23. Fernández-Lorente, G., Palomo, J. M., Cabrera, Z., Guisán, J. M., & Fernández-Lafuente, R. (2008). Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzyme and Microbial Technology, 41, 565–569.

    Article  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  25. Moreno-Perez, S., Filice, M., Guisan, J. M., & Fernandez-Lorente, G. (2013). Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases. Chemical and Physics Lipids, 174, 48–55. https://doi.org/10.1016/j.chemphyslip.2013.06.003.

    Article  CAS  Google Scholar 

  26. Holčapek, M., Jandera, P., Fischer, J., & Prokeṧ, B. (1999). Analytical monitoring of the production of biodiesel by high performance liquid chromatography with various detection methods. Journal of Chromatography A, 858(1), 13–31. https://doi.org/10.1016/S0021-9673(99)00790-6.

    Article  Google Scholar 

  27. Jiang, Z., Yu, M., Ren, L., Zhou, H., & Wei, P. (2013). Synthesis of phytosterol esters catalyzed by immobilized lipase in organic media. Chinese Journal of Catalysis, 12, 2255–2262.

    Article  Google Scholar 

  28. Remonatto, D., Santin, C. M. T., Oliveira, D., Di Luccio, M., & Oliveira, J. V. (2016). FAME production from waste oils through commercial soluble lipase Eversacatalysis. Industrial Biotechnology, 12, 1–9.

    Article  Google Scholar 

  29. Moreno-Perez, S., Orrego, A. H., Romero-Fernández, M., Trobo-Maseda, L., Martins De Oliveira, S., Munilla, R., Fernández-Lorente, G., Guisan, J. M. (2016). Intense pegylation of enzyme surfaces: relevant stabilizing effects. Rational design of enzyme-nanomaterials. Methods in Enzymology, 571, 55–72. https://doi.org/10.1016/bs.mie.2016.02.016.

  30. Zhang, Y., Dai, Y., Hou, M., Li, T., Ge, J., & Liu, Z. (2013). Chemo-enzymatic synthesis of valrubicin using Pluronic conjugated lipase with temperature responsiveness in organic media. RSC Advances, 3(45), 22963–22966. https://doi.org/10.1039/c3ra44879g.

    Article  CAS  Google Scholar 

  31. Lathouder, K. M., Van-Benthem, D. T. J., Wallin, S. A., Mateo, C., Fernandez Lafuente, R., Guisan, J. M., Kapteijn, F., & Moulijn, J. A. (2008). Polyethyleneimine (PEI) functionalized ceramic monoliths as enzyme carriers: preparation and performance. Journal of Molecular Catalysis B: Enzymatic, 50(1), 20–27. https://doi.org/10.1016/j.molcatb.2007.09.016.

    Article  Google Scholar 

  32. Cipolatti, E. P., Valério, A., Ninow, J. L., Oliveira, D., & Pessela, B. C. (2016). Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: application on fish oil ethanolysis. Biochemical Engineering Journal, 112, 54–60. https://doi.org/10.1016/j.bej.2016.04.006.

    Article  CAS  Google Scholar 

  33. Hou, M., Wang, R., Wu, X., Zhang, Y., Ge, J., & Liu, Z. (2015). Synthesis of lutein esters by using a reusable lipase-Pluronic conjugate as the catalyst. Catalysis Letters, 145(10), 1825–1829. https://doi.org/10.1007/s10562-015-1597-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Novozymes and Ramiro Martinez for the generous gift of commercial lipases.

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This work was sponsored by the Spanish Ministry of Science and Innovation (projects AGL-2009-07526 and BIO2012-36861). The authors thank CNPq and CAPES for the scholarships and financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remonatto, D., de Oliveira, J.V., Manuel Guisan, J. et al. Production of FAME and FAEE via Alcoholysis of Sunflower Oil by Eversa Lipases Immobilized on Hydrophobic Supports. Appl Biochem Biotechnol 185, 705–716 (2018). https://doi.org/10.1007/s12010-017-2683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2683-1

Keywords

Navigation