Skip to main content
Log in

Structural Characterization and In Vitro Antitumor Activity of a Novel Exopolysaccharide from Lachnum YM130

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exopolysaccharide of Lachnum YM130 (LEP) was purified by diethylaminoethyl cellulose 52 and Sepharose CL-6B column chromatography. LEP-2a was identified to be a homogeneous component with an average molecular weight of 1.31 × 106 Da, which was consisted of mannose and galactose in a molar ratio of 3.8:1.0. The structure of LEP-2a was characterized by methylation analysis, FT-IR analysis, and NMR analysis. Results indicated that LEP-2a was a galactomannan with a backbone, composed of 1,2-linked-α-D-Manp, 1,2,6-linked-α-D-Manp, 1,3,4-linked-α-D-Manp, and 1,3-linked-β-D-Galp, which was substituted at O-2, O-3, O-4, and O-6 by branches. In vitro antitumor activity assay proved that LEP-2a could significantly enhance the inhibitory effectiveness of 5-FU on Hela cells at the concentrations of 100, 200, 300, and 400 μg/mL. The above results suggested that LEP-2a could be seen as a potential source for developing novel antineoplastic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ye, M., Chen, W. X., Qiu, T., Yuan, R. Y., Ye, Y. W., & Cai, J. M. (2012). Structural characterisation and anti-ageing activity of extracellular polysaccharide from a strain of Lachnum sp. Food Chemistry, 132(1), 338–343. https://doi.org/10.1016/j.foodchem.2011.10.087.

    Article  CAS  Google Scholar 

  2. Nadour, M., Laroche, C., Pierre, G., Delattre, C., Moulti-Mati, F., & Michaud, P. (2015). Structural characterization and biological activities of polysaccharides from olive mill wastewater. Applied Biochemistry and Biotechnology, 177(2), 1–15.

    Article  Google Scholar 

  3. Ding, Q. Y., Yang, D., Zhang, W. N., Lu, Y. M., Zhang, M. Z., Wang, L. M., et al. (2016). Antioxidant and anti-aging activities of the polysaccharide TLH-3 from Tricholoma lobayense. International Journal of Biological Macromolecules, 85, 133–140. https://doi.org/10.1016/j.ijbiomac.2015.12.058.

    Article  CAS  Google Scholar 

  4. He, Y. L., Ye, M., Du, Z. Z., Wang, H. Y., Wu, Y. N., & Yang, L. (2014). Purification, characterization and promoting effect on wound healing of an exopolysaccharide from Lachnum YM405. Carbohydrate Polymers, 105, 169–176. https://doi.org/10.1016/j.carbpol.2014.01.080.

    Article  CAS  Google Scholar 

  5. Liu, J., Zhang, L. H., Ren, Y. G., Gao, Y. L., Kang, L., & Qiao, Q. (2014). Anticancer and immunoregulatory activity of Gynostemma pentaphyllum polysaccharides in H22 tumor-bearing mice. International Journal of Biological Macromolecules, 69, 1–4. https://doi.org/10.1016/j.ijbiomac.2014.05.014.

    Article  Google Scholar 

  6. Chen, X., Xu, X., Zhang, L., & Zeng, F. (2009). Chain conformation and anti-tumor activities of phosphorylated (1→3)-β-D-glucan from Poria cocos. Carbohydrate Polymers, 78(3), 581–587. https://doi.org/10.1016/j.carbpol.2009.05.019.

    Article  CAS  Google Scholar 

  7. Giavasis, I. (2014). Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Current Opinion in Biotechnology, 26, 162–173. https://doi.org/10.1016/j.copbio.2014.01.010.

    Article  CAS  Google Scholar 

  8. Kirk, P.M., Cannon, P.F., Minter, D.W., & Stalpers, J.A. (2001). Ainsworth & Bisby’s dictionary of the fungi: 9th edition. Ainsworth & Bisbys Dictionary of the Fungi Edition.

  9. Qiu, T., Ma, X. J., Ye, M., Yuan, R. Y., & Wu, Y. N. (2013). Purification, structure, lipid lowering and liver protecting effects of polysaccharide from Lachnum YM281. Carbohydrate Polymers, 98, 992–930.

    Article  Google Scholar 

  10. Xu, P., Yang, L., Yuan, R. Y., Ye, Z. Y., Ye, H. R., & Ye, M. (2016). Structure and preventive effects against ethanol-induced gastric ulcer of an expolysaccharide from Lachnum sp. International Journal of Biological Macromolecules, 86, 10–17. https://doi.org/10.1016/j.ijbiomac.2016.01.036.

    Article  CAS  Google Scholar 

  11. Ye, M., Yuan, R. Y., He, Y. L., Du, Z. Z., & Ma, X. J. (2013). Phosphorylation and anti-tumor activity of exopolysaccharide from Lachnum YM120. Carbohydrate Polymers, 97(2), 690–694. https://doi.org/10.1016/j.carbpol.2013.05.033.

    Article  CAS  Google Scholar 

  12. Ye, M., Qiu, T., Peng, W., Chen, W. X., Ye, Y. W., & Lin, Y. R. (2011). Purification, characterization and hypoglycemic activity of extracellular polysaccharides from Lachnum calyculiforme. Carbohydrate Polymers, 86(1), 285–290. https://doi.org/10.1016/j.carbpol.2011.04.051.

    Article  CAS  Google Scholar 

  13. Li, S. H., Gao, A., Dong, S., Chen, Y., Sun, S., Lei, Z. F., & Zhang, Z. Y. (2017). Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with morchella esculenta. International Journal of Biological Macromolecules, 96, 26–34. https://doi.org/10.1016/j.ijbiomac.2016.12.007.

    Article  CAS  Google Scholar 

  14. Wang, J. H., Xu, J. L., Zhang, J. C., Liu, Y., Sun, H. J., & Zha, X. Q. (2015). Physicochemical properties and antioxidant activities of polysaccharide from floral mushroom cultivated in Huangshan Mountain. Carbohydrate Polymers, 131, 240–247. https://doi.org/10.1016/j.carbpol.2015.05.052.

    Article  CAS  Google Scholar 

  15. You, L. J., Gao, Q., Feng, M. Y., Yang, B., Ren, J. Y., Gu, L. J., et al. (2013). Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chemistry, 138(4), 2242–2249. https://doi.org/10.1016/j.foodchem.2012.11.140.

    Article  CAS  Google Scholar 

  16. Chen, Y., Hu, M. L., Wang, C., Yang, Y. L., Chen, J. H., Ding, J. N., et al. (2013). Characterization and in vitro antitumor activity of polysaccharides from the mycelium of Sarcodon aspratus. International Journal of Biological Macromolecules, 52, 52–58. https://doi.org/10.1016/j.ijbiomac.2012.09.005.

    Article  CAS  Google Scholar 

  17. Deng, X. K., Yin, W., Li, W. D., Yin, F. Z., Lu, X. Y., Zhang, X. C., Hua, Z. C., & Cai, B. C. (2006). The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. Journal of Ethnopharmacology, 106(2), 179–186. https://doi.org/10.1016/j.jep.2005.12.021.

    Article  CAS  Google Scholar 

  18. Zhao, S., Cao, F., Zhang, H., Zhang, L., Zhang, F., & Liang, X. (2014). Structural characterization and biosorption of exopolysaccharides from anoxybacillus, sp. r4-33 isolated from radioactive radon hot spring. Applied Biochemistry and Biotechnology, 172(5), 2732–2746. https://doi.org/10.1007/s12010-013-0680-6.

    Article  CAS  Google Scholar 

  19. Hu, T. T., Liu, D., Chen, Y., Wu, J., & Wang, S. S. (2010). Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. International Journal of Biological Macromolecules, 46(2), 193–198. https://doi.org/10.1016/j.ijbiomac.2009.12.004.

    Article  CAS  Google Scholar 

  20. Nep, E. I., Sims, I. M., Morris, G. A., Kontogiorgos, V., & Smith, A. M. (2016). Evaluation of some important physicochemical properties of starch free grewia gum. Food Hydrocolloids, 53, 134–140. https://doi.org/10.1016/j.foodhyd.2015.02.016.

    Article  CAS  Google Scholar 

  21. Sun, Y. X., Liu, J. C., Yang, X. D., & Kennedy, J. F. (2010). Purification, structural analysis and hydroxyl radical-scavenging capacity of a polysaccharide from the fruiting bodies of Russula virescens. Process Biochemistry, 45(6), 874–879. https://doi.org/10.1016/j.procbio.2010.02.007.

    Article  CAS  Google Scholar 

  22. Cao, X. F., Yuan, T. Q., Sun, S. N., & Sun, R. C. (2011). Isolation and characterization of soluble polysaccharides from Calamagrostis Angustifolia Kom. BioResources, 6, 2896–2911.

    CAS  Google Scholar 

  23. Liu, Y. H., Liu, C. H., Jiang, H. Q., Zhou, H. L., Li, P. L., & Wang, F. S. (2015). Isolation, structural characterization and neurotrophic activity of a polysaccharide from Phellinus ribis. Carbohydrate Polymers, 127, 145–151. https://doi.org/10.1016/j.carbpol.2015.03.057.

    Article  CAS  Google Scholar 

  24. Wang, K. P., Wang, J., Li, Q., Zhang, Q. L., You, R. X., Cheng, Y., et al. (2014). Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes. Food Research International, 62, 223–232. https://doi.org/10.1016/j.foodres.2014.02.047.

    Article  CAS  Google Scholar 

  25. Yang, Y., Zhang, J. S., Liu, Y. F., Tang, Q. J., Zhao, Z. G., & Xia, W. S. (2007). Structural elucidation of a 3-O-methyl-D-galactose-containing neutral polysaccharide from the fruiting bodies of Phellinus igniarius. Carbohydrate Research, 342(8), 1063–1070. https://doi.org/10.1016/j.carres.2007.02.019.

    Article  CAS  Google Scholar 

  26. Smiderle, F. R., Sassaki, G. L., Van Griensven, L. J., & Iacomini, M. (2013). Isolation and chemical characterization of a glucogalactomannan of the medicinal mushroom Cordyceps militaris. Carbohydrate Polymers, 97(1), 74–80. https://doi.org/10.1016/j.carbpol.2013.04.049.

    Article  CAS  Google Scholar 

  27. Chen, Y., Mao, W. J., Yang, Y. P., Teng, X. C., Zhu, W. M., Qi, X. H., et al. (2012). Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Carbohydrate Polymers, 87(1), 218–226. https://doi.org/10.1016/j.carbpol.2011.07.042.

    Article  CAS  Google Scholar 

  28. Du, X. J., Zhang, Y., Mu, H. M., Lv, Z. W., Yang, Y., & Zhang, J. S. (2015). Structural elucidation and antioxidant activity of a novel polysaccharide (TAPB1) from Tremella aurantialba. Food Hydrocolloids, 43, 459–464. https://doi.org/10.1016/j.foodhyd.2014.07.004.

    Article  CAS  Google Scholar 

  29. Zdorovenko, E. L., Varbanets, L. D., Zatonsky, G. V., Zdorovenko, G. M., Shashkov, A. S., & Knirel, Y. A. (2009). Isolation and structure elucidation of two different polysaccharides from the lipopolysaccharide of Rahnella aquatilis 33071T. Carbohydrate Research, 344(10), 1259–1262. https://doi.org/10.1016/j.carres.2009.04.013.

    Article  CAS  Google Scholar 

  30. Yuan, Y. F., Wang, Y. B., Jiang, Y. M., Prasad, K. N., Yang, J. L., Qu, H. X., et al. (2016). Structure identification of a polysaccharide purified from Lycium barbarium fruit. International Journal of Biological Macromolecules, 82, 696–701. https://doi.org/10.1016/j.ijbiomac.2015.10.069.

    Article  CAS  Google Scholar 

  31. Cao, X., Liu, R., Liu, J., Huo, Y., Yang, W., Zeng, M., & Yang, C. (2013). A novel polysaccharide from lentinus edodes, mycelia exhibits potential antitumor activity on laryngeal squamous cancer cell line hep-2. Applied Biochemistry and Biotechnology, 171(6), 1444–1453. https://doi.org/10.1007/s12010-013-0441-6.

    Article  CAS  Google Scholar 

  32. Huang, Q. L., Jin, Y., Zhang, L. N., Cheung, C. K., & Kennedy, J. F. (2007). Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter. Carbohydrate Polymers, 70(3), 324–333. https://doi.org/10.1016/j.carbpol.2007.04.015.

    Article  CAS  Google Scholar 

  33. Cui, F. J., Tao, W. Y., Xu, Z. H., Guo, W. J., Xu, H. Y., Ao, Z. H., Jin, J., & Wei, Y. Q. (2007). Structural analysis of antitumor heteropolysaccharide GFPS1b from the cultured mycelia of Grifola frondosa GF9801. Bioresource Technology, 98(2), 395–401. https://doi.org/10.1016/j.biortech.2005.12.015.

    Article  CAS  Google Scholar 

  34. Tong, H. B., Xia, F. G., Feng, K., Sun, G. R., Gao, X. X., Sun, L. W., et al. (2009). Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technology, 100(4), 1682–1686. https://doi.org/10.1016/j.biortech.2008.09.004.

    Article  CAS  Google Scholar 

  35. Li, F., Wang, F. F., Yu, F., Fang, Y., Xin, Z. H., Yang, F. M., et al. (2008). In vitro antioxidant and anticancer activities of ethanolic extract of selenium-enriched green tea. Food Chemistry, 111(1), 165–170. https://doi.org/10.1016/j.foodchem.2008.03.057.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the support provided by the project “National Natural Science Foundation of China (31470146)” and “Doctoral Research Foundation of HFUT (Grant No.:31700015 JZ2016HGBZ0747).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ye.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Statement

The article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Yuan, R., Hou, G. et al. Structural Characterization and In Vitro Antitumor Activity of a Novel Exopolysaccharide from Lachnum YM130. Appl Biochem Biotechnol 185, 541–554 (2018). https://doi.org/10.1007/s12010-017-2668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2668-0

Keywords

Navigation