Skip to main content

Advertisement

Log in

Triangle of AKT2, miRNA, and Tumorigenesis in Different Cancers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

AKT (AK mouse plus Transforming or Thymoma) is a frequent oncogene expressed in most tissues which includes three isoforms AKT1, AKT2, and AKT3. Hyperactivation of AKT signaling is a central key in many human cancer progressions, through modulating angiogenesis, tumor growth, and cell migration, invasion, metastasis, and chemoresistance. Among all three isoforms, AKT2 is most related to cancer cell invasion, metastasis, and survival. Amplification and overexpression of AKT2 have been shown in many cancers. Accumulating evidence shows the potential role of different miRNA involvements in cancer progression by activating or suppressing AKT2 expression. In an in-depth literature review, we focus on the role of AKT2 activation and its consequences on the tumor progression in different cancers. In addition, we describe the function of numerous AKT2-related miRNAs which are important in various cancers as diagnostic, prognostic, and therapeutic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hers, I., Vincent, E. E., & Tavaré, J. M. (2011). Akt signalling in health and disease. Cellular Signalling, 23(10), 1515–1527. https://doi.org/10.1016/j.cellsig.2011.05.004.

    Article  CAS  Google Scholar 

  2. Cohen, M. M. (2013). The AKT genes and their roles in various disorders. American Journal of Medical Genetics Part A., 161(12), 2931–2937. https://doi.org/10.1002/ajmg.a.36101.

    Article  CAS  Google Scholar 

  3. Abu Eid, R., Friedman, K. M., Mkrtichyan, M., Walens, A., King, W., Janik, J., & Khleif, S. N. (2015). Akt1 and-2 inhibition diminishes terminal differentiation and enhances central memory CD8+ T-cell proliferation and survival. Onco Immunology., 4(5), e1005448. https://doi.org/10.1080/2162402X.2015.1005448.

    Google Scholar 

  4. Vivanco, I., Chen, Z. C., Tanos, B., Oldrini, B., Hsieh, W.-Y., Yannuzzi, N., et al. (2015). A kinase-independent function of AKT promotes cancer cell survival. eLife, 3, e03751.

    Google Scholar 

  5. Watson, K. L., & Moorehead, R. A. (2013). Loss of Akt1 or Akt2 delays mammary tumor onset and suppresses tumor growth rate in MTB-IGFIR transgenic mice. BMC Cancer, 13(1), 375. https://doi.org/10.1186/1471-2407-13-375.

    Article  CAS  Google Scholar 

  6. Fortier, A.-M., Asselin, E., & Cadrin, M. (2011). Functional specificity of Akt isoforms in cancer progression. Biomolecular Concepts, 2(1–2), 1–11. https://doi.org/10.1515/bmc.2011.003.

    Article  CAS  Google Scholar 

  7. Wickenden, J. A., & Watson, C. J. (2010). Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Research, 12(202), 1–9.

    Google Scholar 

  8. Chin, Y. R., Yuan, X., Balk, S. P., & Toker, A. (2014). PTEN-deficient tumors depend on AKT2 for maintenance and survival. Cancer Discovery., 4(8), 942–955. https://doi.org/10.1158/2159-8290.CD-13-0873.

    Article  CAS  Google Scholar 

  9. Cheung, M., & Testa, J. R. (2013). Diverse mechanisms of AKT pathway activation in human malignancy. Current Cancer Drug Targets., 13(3), 234–244. https://doi.org/10.2174/1568009611313030002.

    Article  CAS  Google Scholar 

  10. Saini, S., Arora, S., Majid, S., Shahryari, V., Chen, Y., Deng, G., Yamamura, S., Ueno, K., & Dahiya, R. (2011). Curcumin modulates MicroRNA-203–mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prevention Research., 4(10), 1698–1709. https://doi.org/10.1158/1940-6207.CAPR-11-0267.

    Article  CAS  Google Scholar 

  11. Honardoost, M., Arefian, E., Soleimani, M., Soudi, S., & Sarookhani, M. R. (2016). Development of insulin resistance through induction of miRNA-135 in C2C12 cells. Cell Journal (Yakhteh), 18(3), 353.

    Google Scholar 

  12. Honardoost, M., reza Sarookhani, M., Arefian, E., & Soleimani, M. (2014). Insulin resistance associated genes and miRNAs. Applied Biochemistry and Biotechnology, 174(1), 63–80. https://doi.org/10.1007/s12010-014-1014-z.

    Article  CAS  Google Scholar 

  13. Rad, S. M., Langroudi, L., Kouhkan, F., Yazdani, L., Koupaee, A. N., Asgharpour, S., et al. (2015). Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol, 36(7), 4871–4881. https://doi.org/10.1007/s13277-015-3344-z.

    Article  CAS  Google Scholar 

  14. Rad, S. M. A. H., Bavarsad, M. S., Arefian, E., Jaseb, K., Shahjahani, M., & Saki, N. (2013). The role of microRNAs in stemness of cancer stem cells. Oncology Reviews., 7(1), 8.

    Article  Google Scholar 

  15. Fallah P, Amirizadeh N, Poopak B, Toogeh G, Arefian E, Kohram F, Hosseini Rad SMA, Kohram M, Teimori Naghadeh H, Soleimani M (2015).Expression pattern of key microRNAs in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J Lab Hematol, 37, 4, 560, 568, DOI: https://doi.org/10.1111/ijlh.12351.

  16. Kouhkan F, Mobarra N, Soufi-Zomorrod M, Keramati F, Hosseini Rad SM, Fathi-Roudsari M, et al. (2015).MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1. Journal of Medical Genetics.

  17. Dong, P., Konno, Y., Watari, H., Hosaka, M., Noguchi, M., & Sakuragi, N. (2014). The impact of microRNA-mediated PI3K/AKT signaling on epithelial-mesenchymal transition and cancer stemness in endometrial cancer. Journal of Translational Medicine, 12(1), 231. https://doi.org/10.1186/s12967-014-0231-0.

    Article  Google Scholar 

  18. Zou, C., Xu, Q., Mao, F., Li, D., Bian, C., Liu, L.-Z., Jiang, Y., Chen, X., Qi, Y., Zhang, X., Wang, X., Sun, Q., Kung, H. F., Lin, M. C., Dress, A., Wardle, F., Jiang, B. H., & Lai, L. (2012). MiR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle, 11(11), 2137–2145. https://doi.org/10.4161/cc.20598.

    Article  CAS  Google Scholar 

  19. Fang W, Huang K, Lan Y, Lin C, Chang S, Chen M, et al. (2015).Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget.

  20. I Philpilidis AG, P. Katsinelos. Changing panorama of gastric cancer: implication for upper GI endoscopy guildlines. In: C.Cardinni D, editor. Research Focus on Gastric Cancer. New York: Nova Science; 2008. p. 220.

  21. Zhang, Q.-Y., Cheng, W.-X., Li, W.-M., Au, W., & Lu, Y.-Y. (2014). Occurrence of low frequency PIK3CA and AKT2 mutations in gastric cancer. Mutation Research/fundamental and Molecular Mechanisms of Mutagenesis, 769, 108–112.

    Article  CAS  Google Scholar 

  22. Wu, L., Chen, J., Ding, C., Wei, S., Zhu, Y., Yang, W., Zhang, X., Wei, X., & Han, D. (2015). MicroRNA-137 contributes to dampened tumorigenesis in human gastric cancer by targeting AKT2. PLoS One, 10(6), e0130124. https://doi.org/10.1371/journal.pone.0130124.

    Article  Google Scholar 

  23. Zhang, H., Cheng, Y., Jia, C., Yu, S., Xiao, Y., & Chen, J. (2015). MicroRNA-29s could target AKT2 to inhibit gastric cancer cells invasion ability. Medical Oncology., 32(1), 1–7.

    Google Scholar 

  24. Kang, W., Tong, J. H., Lung, R. W., Dong, Y., Yang, W., Pan, Y., et al. (2014). let-7b/g silencing activates AKT signaling to promote gastric carcinogenesis. Journal of Translational Medicine, 12(1), 281. https://doi.org/10.1186/s12967-014-0281-3.

    Article  Google Scholar 

  25. Wang, F., Liu, J., Zou, Y., Jiao, Y., Huang, Y., Fan, L., Li, X., Yu, H., He, C., Wei, W., Wang, H., & Sun, G. (2017). MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget, 8(17), 28711–28724. 10.18632/oncotarget.15646.

    Google Scholar 

  26. Sheng, L., He, P., Yang, X., Zhou, M., & Feng, Q. (2015). miR-612 negatively regulates colorectal cancer growth and metastasis by targeting AKT2. Cell Death & Disease., 6(7), e1808. https://doi.org/10.1038/cddis.2015.184.

    Article  CAS  Google Scholar 

  27. Sahlberg, S. H., Spiegelberg, D., Glimelius, B., Stenerlöw, B., & Nestor, M. (2014). Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS One, 9(4), e94621. https://doi.org/10.1371/journal.pone.0094621.

    Article  Google Scholar 

  28. Ding, Z., Xu, F., Li, G., Tang, J., Tang, Z., Jiang, P., & Wu, H. (2015). Knockdown of Akt2 expression by shRNA inhibits proliferation, enhances apoptosis, and increases chemosensitivity to paclitaxel in human colorectal cancer cells. Cell Biochemistry and Biophysics., 71(1), 383–388. https://doi.org/10.1007/s12013-014-0209-9.

    Article  CAS  Google Scholar 

  29. Zhao, H.-J., Ren, L.-L., Wang, Z.-H., Sun, T.-T., Y-N, Y., Wang, Y.-C., et al. (2014). MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway. Theranostics., 4(12), 1193–1208. https://doi.org/10.7150/thno.8712.

    Article  CAS  Google Scholar 

  30. Li, J., Chen, Y., Zhao, J., Kong, F., & Zhang, Y. (2011). miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Letters., 304(1), 52–59. https://doi.org/10.1016/j.canlet.2011.02.003.

    Article  CAS  Google Scholar 

  31. Nemazanyy, I., Espeillac, C., Pende, M., & Panasyuk, G. (2013). Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochemical Society Transactions., 41(4), 917–922. https://doi.org/10.1042/BST20130034.

    Article  CAS  Google Scholar 

  32. Fang, Y., Xue, J. L., Shen, Q., Chen, J., & Tian, L. (2012). MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology, 55(6), 1852–1862. https://doi.org/10.1002/hep.25576.

    Article  CAS  Google Scholar 

  33. Wang, L., Yao, J., Shi, X., Hu, L., Li, Z., Song, T., & Huang, C. (2013). MicroRNA-302b suppresses cell proliferation by targeting EGFR in human hepatocellular carcinoma SMMC-7721 cells. BMC Cancer, 13(1), 448. https://doi.org/10.1186/1471-2407-13-448.

    Article  Google Scholar 

  34. Tao, Z.-H., Wan, J.-L., Zeng, L.-Y., Xie, L., Sun, H.-C., Qin, L.-X., Wang, L., Zhou, J., Ren, Z. G., Li, Y. X., Fan, J., & Wu, W. Z. (2013). miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. The Journal of Experimental Medicine., 210(4), 789–803. https://doi.org/10.1084/jem.20120153.

    Article  CAS  Google Scholar 

  35. Tang, J., Tao, Z.-H., Wen, D., Wan, J.-L., Liu, D.-L., Zhang, S., Cui, J. F., Sun, H. C., Wang, L., Zhou, J., Fan, J., & Wu, W. Z. (2014). MiR-612 suppresses the stemness of liver cancer via Wnt/β-catenin signaling. Biochemical and Biophysical Research Communications., 447(1), 210–215. https://doi.org/10.1016/j.bbrc.2014.03.135.

    Article  CAS  Google Scholar 

  36. Wang, L., Yao, J., Zhang, X., Guo, B., Le, X., Cubberly, M., Li, Z., Nan, K., Song, T., & Huang, C. (2014). miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2. Molecular Cancer Research., 12(2), 190–202. https://doi.org/10.1158/1541-7786.MCR-13-0411.

    Article  CAS  Google Scholar 

  37. Bao, L., Yan, Y., Xu, C., Ji, W., Shen, S., Xu, G., Zeng, Y., Sun, B., Qian, H., Chen, L., Wu, M., Su, C., & Chen, J. (2013). MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Letters, 337(2), 226–236. https://doi.org/10.1016/j.canlet.2013.05.007.

    Article  CAS  Google Scholar 

  38. Wong, Q. W., Ching, A. K., Chan, A. W., Choy, K. W., To, K. F., Lai, P. B., et al. (2010). MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clinical Cancer Research : an official journal of the American Association for Cancer Research., 16(3), 867–875. https://doi.org/10.1158/1078-0432.CCR-09-1840.

    Article  CAS  Google Scholar 

  39. Ma, D., Tao, X., Gao, F., Fan, C., & Wu, D. (2012). miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncology Letters., 4(3), 483–488. https://doi.org/10.3892/ol.2012.742.

    Article  CAS  Google Scholar 

  40. Karger, S., Weidinger, C., Krause, K., Sheu, S.-Y., Aigner, T., Gimm, O., Schmid, K. W., Dralle, H., & Fuhrer, D. (2009). FOXO3a: a novel player in thyroid carcinogenesis? Endocrine-related cancer., 16(1), 189–199. https://doi.org/10.1677/ERC-07-0283.

    Article  CAS  Google Scholar 

  41. Chew, C. L., Lunardi, A., Gulluni, F., Ruan, D. T., Chen, M., Salmena, L., et al. (2015). In vivo role of INPP4B in tumor and metastasis suppression through regulation of PI3K–AKT signaling at endosomes. Cancer Discovery, 5(7), 740–751.

    Article  Google Scholar 

  42. Nai, Q., Luo, H., Zhang, P., Hossain, M. A., Gu, P., Sidhom, I. W., Mathew, T., Islam, M., Yousif, A. M., & Sen, S. (2015). How early can pancreatic cancer be recognized a case report and review of the literature. Case Reports in Oncology., 8(1), 46–49. https://doi.org/10.1159/000375121.

    Article  Google Scholar 

  43. Sun, Y., Zhang, T., Wang, C., Jin, X., Jia, C., Yu, S., & Chen, J. (2015). MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS One, 10(4), e0119783. https://doi.org/10.1371/journal.pone.0119783.

    Article  Google Scholar 

  44. Wang, B., Zhang, S., Yue, K., & Wang, X.-D. (2013). The recurrence and survival of oral squamous cell carcinoma: a report of 275 cases. Chinese Journal of Cancer, 32(11), 614–618. https://doi.org/10.5732/cjc.012.10219.

    Article  Google Scholar 

  45. Archewa P, Pata S, Chotjumlong P, Supanchart C, Krisanaprakornkit S, Iamaroon A (2015).Akt2 and p-Akt overexpression in oral cancer cells is due to a reduced rate of protein degradation. Journal of Investigative and Clinical Dentistry.

  46. Iamaroon, A., & Krisanaprakornkit, S. (2009). Overexpression and activation of Akt2 protein in oral squamous cell carcinoma. Oral Oncology., 45(10), e175–e1e9. https://doi.org/10.1016/j.oraloncology.2009.06.003.

    Article  CAS  Google Scholar 

  47. Fang, L., Wang, H., Zhou, L., & Yu, D. (2011). Akt-FOXO3a signaling axis dysregulation in human oral squamous cell carcinoma and potent efficacy of FOXO3a-targeted gene therapy. Oral Oncology., 47(1), 16–21. https://doi.org/10.1016/j.oraloncology.2010.10.010.

    Article  Google Scholar 

  48. Marfe, G., Di Stefano, C., Gambacurta, A., Ottone, T., Martini, V., Abruzzese, E., et al. (2011). Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Experimental Hematology, 39(6), 653–665 e6.

    Article  CAS  Google Scholar 

  49. Gong, J., Yu, J., Lin, H., Zhang, X., Yin, X., Xiao, Z., et al. (2014). The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death & Differentiation, 21(1), 100–112. https://doi.org/10.1038/cdd.2013.133.

    Article  CAS  Google Scholar 

  50. Watanabe, A., Tagawa, H., Yamashita, J., Teshima, K., Nara, M., Iwamoto, K., Kume, M., Kameoka, Y., Takahashi, N., Nakagawa, T., Shimizu, N., & Sawada, K. (2011). The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia, 25(8), 1324–1334. https://doi.org/10.1038/leu.2011.81.

    Article  CAS  Google Scholar 

  51. Zhu, Y., Zhou, J., Ji, Y., & Yu, B. (2014). Elevated expression of AKT2 correlates with disease severity and poor prognosis in human osteosarcoma. Molecular Medicine Reports., 10(2), 737–742. https://doi.org/10.3892/mmr.2014.2314.

    Article  CAS  Google Scholar 

  52. Zhang, J., Han, L., Zhang, A., Wang, Y., Yue, X., You, Y., Pu, P., & Kang, C. (2010). AKT2 expression is associated with glioma malignant progression and required for cell survival and invasion. Oncology Reports., 24(1), 65–72.

    Google Scholar 

  53. Mure, H., Matsuzaki, K., Kitazato, K. T., Mizobuchi, Y., Kuwayama, K., Kageji, T., & Nagahiro, S. (2010). Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro-Oncology, 12(3), 221–232. https://doi.org/10.1093/neuonc/nop026.

    Article  CAS  Google Scholar 

  54. Liu, X., Su, Z., Jiang, Z., Li, G., Song, J., Huang, K., et al. (2012). Inhibitory effect of folic acid/polyamide-amine as a miR-7 vector on the growth of glioma in mice. Zhonghua zhong liu za zhi [Chinese Journal of Oncology]., 34(5), 325–330.

    CAS  Google Scholar 

  55. Foley, N. H., Bray, I. M., Tivnan, A., Bryan, K., Murphy, D. M., Buckley, P. G., et al. (2010). MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Molecular Cancer., 9(1), 1.

    Article  Google Scholar 

  56. Paul, P., Volny, N., Lee, S., Qiao, J., & Chung, D. H. (2013). Gli1 transcriptional activity is negatively regulated by AKT2 in neuroblastoma. Oncotarget, 4(8), 1149–1157. 10.18632/oncotarget.1074.

    Article  Google Scholar 

  57. Qiao, J., Lee, S., Paul, P., Qiao, L., Taylor, C. J., Schlegel, C., Colon, N. C., & Chung, D. H. (2013). Akt2 regulates metastatic potential in neuroblastoma. PLoS One, 8(2), e56382. https://doi.org/10.1371/journal.pone.0056382.

    Article  CAS  Google Scholar 

  58. Hinske LC, Heyn J, Hübner M, Rink J, Hirschberger S, Kreth S (2017).Intronic miRNA-641 controls its host Gene’s pathway PI3K/AKT and is dysfunctional in glioblastoma multiforme. Biochemical and Biophysical Research Communications.

  59. Linnerth-Petrik, N. M., Santry, L. A., Petrik, J. J., & Wootton, S. K. (2014). Opposing functions of Akt isoforms in lung tumor initiation and progression. PLoS One, 9(4), e94595. https://doi.org/10.1371/journal.pone.0094595.

    Article  Google Scholar 

  60. Dobashi, Y., Kimura, M., Matsubara, H., Endo, S., Inazawa, J., & Ooi, A. (2012). Molecular alterations in AKT and its protein activation in human lung carcinomas. Human Pathology., 43(12), 2229–2240. https://doi.org/10.1016/j.humpath.2012.03.015.

    Article  CAS  Google Scholar 

  61. Sung, J. S., Park, K. H., Kim, S. T., & Kim, Y. H. (2012). Discovery and evaluation of polymorphisms in the AKT2 and AKT3 promoter regions for risk of Korean lung cancer. Genomics & Informatics., 10(3), 167–174. https://doi.org/10.5808/GI.2012.10.3.167.

    Article  Google Scholar 

  62. Miao, X., Song, Y., Lv, T., Zhan, P., Lv, Y., & Yuan, D. (2011). Expression and prognostic value of AKT2 in non-small cell lung cancer. Zhongguo fei ai za zhi= Chinese Journal of Lung Cancer., 14(5), 396–399.

    Google Scholar 

  63. Chen, M., Gu, J., Delclos, G. L., Killary, A. M., Fan, Z., Hildebrandt, M. A., et al. (2010). Genetic variations of the PI3K–AKT–mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients. Carcinogenesis, 31(8), 1387–1391. https://doi.org/10.1093/carcin/bgq110.

    Article  CAS  Google Scholar 

  64. Marchbank, T., Mahmood, A., & Playford, R. J. (2013). Pancreatic secretory trypsin inhibitor causes autocrine-mediated migration and invasion in bladder cancer and phosphorylates the EGF receptor, Akt2 and Akt3, and ERK1 and ERK2. American Journal of Physiology-Renal Physiology., 305(3), F382–F3F9. https://doi.org/10.1152/ajprenal.00357.2012.

    Article  CAS  Google Scholar 

  65. Liang, Z., Wang, X., Xu, X., Xie, B., Ji, A., Meng, S., Li, S., Zhu, Y., Wu, J., Hu, Z., Lin, Y., Zheng, X., Xie, L., & Liu, B. (2017). MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway. Molecular Cancer., 16(1), 96. https://doi.org/10.1186/s12943-017-0664-1.

    Article  Google Scholar 

  66. Ye Y, Tang X, Sun Z, Chen S (2016).Upregulated WDR26 serves as a scaffold to coordinate PI3K/AKT pathway-driven breast cancer cell growth, migration, and invasion. Oncotarget.

  67. Fohlin, H., Pérez-Tenorio, G., Fornander, T., Skoog, L., Nordenskjöld, B., Carstensen, J., & Stål, O. (2013). Akt2 expression is associated with good long-term prognosis in oestrogen receptor positive breast cancer. European Journal of Cancer., 49(6), 1196–1204. https://doi.org/10.1016/j.ejca.2012.12.006.

    Article  CAS  Google Scholar 

  68. Bai, Y., Li, J., Li, J., Liu, Y., & Zhang, B. (2015). MiR-615 inhibited cell proliferation and cell cycle of human breast cancer cells by suppressing of AKT2 expression. International Journal of Clinical and Experimental Medicine., 8(3), 3801–3808.

    CAS  Google Scholar 

  69. Iliopoulos, D., Polytarchou, C., Hatziapostolou, M., Kottakis, F., Maroulakou, I. G., Struhl, K., et al. (2009). microRNAS differentially regulated by Akt isoforms, control EMT and stem cell renewal in cancer cells. Science Signaling, 2(92), ra62.

    Article  Google Scholar 

  70. Cheikh, A., El Majjaoui, S., Ismaili, N., Cheikh, Z., Bouajaj, J., Nejjari, C., et al. (2016). Evaluation of the cost of cervical cancer at the National Institute of Oncology, Rabat. Pan African Medical Journal., 23(1), 209. 10.11604/pamj.2016.23.209.7750.

    Google Scholar 

  71. Xu, J., Wan, X., Chen, X., Fang, Y., Cheng, X., Xie, X., et al. (2016). miR-2861 acts as a tumor suppressor via targeting EGFR/AKT2/CCND1 pathway in cervical cancer induced by human papillomavirus virus 16 E6. Scientific Reports, 6, 28968.

    Article  CAS  Google Scholar 

  72. Khabele, D., Kabir, S. M., Dong, Y., Lee, E., Rice, V. M., & Son, D.-S. (2014). Preferential effect of Akt2-dependent signaling on the cellular viability of ovarian cancer cells in response to EGF. Journal of Cancer., 5(8), 670–678. https://doi.org/10.7150/jca.9688.

    Article  CAS  Google Scholar 

  73. Liu, C., & Yang, F. (2015). Akt2/ZEB2 may be a biomarker for exfoliant cells in ascitic fluid in advanced grades of serous ovarian carcinoma. Tumor Biology, 36(9), 7213–7219. https://doi.org/10.1007/s13277-015-3437-8.

    Article  CAS  Google Scholar 

  74. Polytarchou, C., Iliopoulos, D., Hatziapostolou, M., Kottakis, F., Maroulakou, I., Struhl, K., & Tsichlis, P. N. (2011). Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Research., 71(13), 4720–4731. https://doi.org/10.1158/0008-5472.CAN-11-0365.

    Article  CAS  Google Scholar 

  75. Saini, S., Majid, S., Shahryari, V., Arora, S., Yamamura, S., Chang, I., Zaman, M. S., Deng, G., Tanaka, Y., & Dahiya, R. (2012). miRNA-708 control of CD44+ prostate cancer–initiating cells. Cancer Research., 72(14), 3618–3630. https://doi.org/10.1158/0008-5472.CAN-12-0540.

    Article  CAS  Google Scholar 

  76. Virtakoivu, R., Pellinen, T., Rantala, J. K., Perälä, M., & Ivaska, J. (2012). Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer. Molecular biology of the cell, 23(17), 3357–3369.

    Article  CAS  Google Scholar 

  77. Nitulescu, G. M., Margina, D., Juzenas, P., Peng, Q., Olaru, O. T., Saloustros, E., Fenga, C., Spandidos, D. Α., Libra, M., & Tsatsakis, A. M. (2016). Akt inhibitors in cancer treatment: the long journey from drug discovery to clinical use. International Journal of Oncology., 48(3), 869–885. https://doi.org/10.3892/ijo.2015.3306.

    Article  CAS  Google Scholar 

  78. Brognard, J., Clark, A. S., Ni, Y., & Dennis, P. A. (2001). Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Research, 61(10), 3986–3997.

    CAS  Google Scholar 

  79. Page, C., Lin, H. J., Jin, Y., Castle, V. P., Nunez, G., Huang, M., & Lin, J. (2000). Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Research, 20(1A), 407–416.

    CAS  Google Scholar 

  80. Altomare, D. A., Wang, H. Q., Skele, K. L., De Rienzo, A., Klein-Szanto, A. J., Godwin, A. K., et al. (2004). AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene, 23(34), 5853–5857. https://doi.org/10.1038/sj.onc.1207721.

    Article  CAS  Google Scholar 

  81. deGraffenried, L. A., Friedrichs, W. E., Russell, D. H., Donzis, E. J., Middleton, A. K., Silva, J. M., Roth, R. A., & Hidalgo, M. (2004). Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity. Clinical Cancer Research : an official journal of the American Association for Cancer Research., 10(23), 8059–8067. https://doi.org/10.1158/1078-0432.CCR-04-0035.

    Article  CAS  Google Scholar 

  82. Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology : official journal of the American Society of Clinical Oncology., 22(14), 2954–2963. https://doi.org/10.1200/JCO.2004.02.141.

    Article  CAS  Google Scholar 

  83. Li, W., Croce, K., Steensma, D. P., McDermott, D. F., Ben-Yehuda, O., & Moslehi, J. (2015). Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. Journal of the American College of Cardiology, 66(10), 1160–1178. https://doi.org/10.1016/j.jacc.2015.07.025.

    Article  Google Scholar 

  84. Polivka Jr., J., & Janku, F. (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology & Therapeutics., 142(2), 164–175.

    Article  CAS  Google Scholar 

  85. Christopher, A. F., Kaur, R. P., Kaur, G., Kaur, A., Gupta, V., & Bansal, P. (2016). MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspectives in Clinical Research., 7(2), 68–74. https://doi.org/10.4103/2229-3485.179431.

    Article  Google Scholar 

  86. Meola, N., Gennarino, V. A., & Banfi, S. (2009). microRNAs and genetic diseases. PathoGenetics, 2(1), 7. https://doi.org/10.1186/1755-8417-2-7.

    Article  Google Scholar 

  87. Bhattacharya, A., Ziebarth, J. D., & Cui, Y. (2012). SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Research, 41(D1), D977–DD82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Honardoost.

Ethics declarations

Conflicts of Interest

Authors disclose any commercial associations that might create a conflict of interest in connection with submitted manuscripts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honardoost, M., Rad, S.M.A.H. Triangle of AKT2, miRNA, and Tumorigenesis in Different Cancers. Appl Biochem Biotechnol 185, 524–540 (2018). https://doi.org/10.1007/s12010-017-2657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2657-3

Keywords

Navigation