Skip to main content

Enzymatic Activation of the Emerging Drug Resveratrol


The plant originated stilbene “resveratrol” (3,4′,5-trans-trihydroxystilbene) is well known for its diverse health benefits including anti-tumor, anti-inflammatory, anti-microbial, and anti-oxidant properties. Besides a significant amount of reports on different aspects of its application as prodrug in the last 50 years, still, a strategy leading to the production of the active drug is missing. The aim of this work was to evaluate the enzymatic activation of prodrug resveratrol to the effective drug piceatannol, without engaging expensive cofactors. Five different heme proteins were analyzed for the transformation of resveratrol. Kinetic parameters of resveratrol transformation and analysis of the transformed products were conducted through HPLC and GC-MS. Effect of pH and organic solvent on the transformation process had also been evaluated. Among all tested heme proteins, only a variant of cytochrome P450BM3 from Bacillus megaterium (CYPBM3F87A) was found suitable for piceatannol production. The most suitable pH for the reaction conditions was 8.5, while organic solvents did not show any effect on transformation. For resveratrol transformation, the turnover rate (k cat) was 21.7 (± 0.6) min−1, the affinity constant (K M) showed a value of 55.7 (± 16.7) μM for a catalytic efficiency (k cat/K M) of 389 min−1 mM−1. GC-MS analysis showed that the only product from resveratrol transformation by cytochrome P450BM3 is the biologically active piceatannol. The enzymatic transformation of resveratrol, an emerging compound with medical interest, to active product piceatannol by a variant of cytochrome P450BM3 in the absence of expensive NADPH cofactor is demonstrated. This enzymatic process is economically attractive and can be scaled up to cover the increasing medical demand for piceatannol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Piotrowska, H., Kucinska, M., & Murias, M. (2012). Biological activity of piceatannol: leaving the shadow of resveratrol. Mutation Research, 750(1), 60–82.

    CAS  Article  Google Scholar 

  2. Cordova-Gomez, M., Galano, A., & Alvarez-Idaboy, J. A. (2013). Piceatannol, a better peroxyl radical scavenger than resveratrol. RSC Advances, 3(43), 20209–20218.

    CAS  Article  Google Scholar 

  3. Kiselev, K. V. (2011). Perspectives for production and application of resveratrol. Applied Microbiology and Biotechnology, 90(2), 417–425.

    CAS  Article  Google Scholar 

  4. Kukreja, A., Wadhwa, N., & Tiwari, A. (2014). Therapeutic role of resveratrol and piceatannol in disease prevention. Journal of Blood Disorder and Transfusion, 5(9), 1–6.

    Google Scholar 

  5. Potter, G. A., Patterson, L. H., Wanogho, E., Perry, P. J., Butler, P. C., Ijaz, T., Ruparelia, K. C., Lamb, J. H., Farmer, P. B., Stanley, L. A., & Burke, M. D. (2002). The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Brazilian Journal of Cancer, 86(5), 774–778.

    CAS  Article  Google Scholar 

  6. Piver, B., Fer, M., Vitrac, X., Merillon, J. M., Dreano, Y., Berthou, F., & Lucas, D. (2004). Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochemical Pharmacology, 68(4), 773–782.

    CAS  Article  Google Scholar 

  7. Agundez, J. A. (2004). Cytochrome P450 gene polymorphism and cancer. Current Drug Metabolism, 5(3), 211–224.

    CAS  Article  Google Scholar 

  8. Choudharya, D., Janssona, I., Schenkmana, J. B., Sarfarazib, M., & Stoilovb, I. (2003). Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Archives of Biochemistry and Biophysics, 414(1), 91–100.

    Article  Google Scholar 

  9. Kramer, S. D., & Testa, B. (2008). The biochemistry of drug metabolism–an introduction: part 6. Inter-individual factors affecting drug metabolism. Chemistry and Biodiversity, 5(12), 2465–2578.

    CAS  Article  Google Scholar 

  10. Testa, B. (2009). Prodrugs: bridging pharmacodynamic/pharmacokinetic gaps. Current Opinion in Chemical Biology, 13(3), 338–344.

    CAS  Article  Google Scholar 

  11. Huttunen, K. M., Raunio, H., & Rautio, J. (2011). Prodrugs—sfrom serendipity to rational design. Pharmacological Reviews, 63(3), 750–771.

    CAS  Article  Google Scholar 

  12. Otey, C. R., Bandara, G., Lalonde, J., Takahashi, K., & Arnold, F. (2005). Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochrome P450. Biotechnology and Bioengineering, 93(3), 494–499.

    Article  Google Scholar 

  13. Yun, H., Kim, K. H., Kim, D. H., Jung, H. C., & Pan, J. G. (2007). The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities. Trends in Biotechnology, 25(7), 289–298.

    CAS  Article  Google Scholar 

  14. Kim, D. H., Ahn, T., Jung, H. C., Pan, J. G., & Yun, C. H. (2009). Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3. Drug Metabolism and Disposition, 37(5), 932–936.

    CAS  Article  Google Scholar 

  15. Quester, K., Juarez-Moreno, K., Secundino, I., Roseinstein, Y., Alejo, K. P., Huerta-Saquero, A., & Vazquez-Duhalt, R. (2017). Cytochrome P450 bioconjugate as a nanovehicle for improved chemotherapy treatment. Macromolecular Bioscience, 17(5), 1600374.

    Article  Google Scholar 

  16. Ayala, M., Hernandez-Lopez, E., Perezgasga, L., & Vazquez-Duhalt, R. (2012). Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel, 92(1), 245–249.

    CAS  Article  Google Scholar 

  17. Baratto, M. C., Juarez-Moreno, K., Pogni, R., Basosi, R., & Vazquez-Duhalt, R. (2015). EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. Environmental Science and Pollution Research, 22(11), 8683–8692.

    CAS  Article  Google Scholar 

  18. Uyuama, H., & Kobayashi, S. (2003). Enzymatic synthesis of polyphenols. Current Organic Chemistry, 7(13), 1387–1397.

    Article  Google Scholar 

  19. Wagner, M., & Nicell, J. A. (2002). Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Research, 36(16), 4041–4052.

    CAS  Article  Google Scholar 

  20. Vidal-Limón, A., Águila, S., Ayala, M., Batista, C. V., & Vazquez-Duhalt, R. (2013). Peroxidase activity stabilization of cytochrome P450BM3 by rational analysis of intramolecular electron transfer. Journal of Inorganic Biochemistry, 122(1), 18–26.

    Article  Google Scholar 

  21. Cirino, P. C., & Arnold, F. H. (2002). Regioselectivity and activity of cytochrome P450 BM-3 and mutant F87A in reactions driven by hydrogen peroxide. Advanced Synthesis and Catalysis, 344(9), 932–937.

    CAS  Article  Google Scholar 

  22. Sanchez-Sanchez, L., Roman, R., & Vazquez-Duhalt, R. (2012). Pesticide transformation by a variant of CYPBM3 with improved peroxygenase activity. Pesticide Biochemistry and Physiology, 102(2), 169–174.

    CAS  Article  Google Scholar 

  23. Auclair, K., Moënne-Loccoz, P., & Ortiz de Montellano, P. R. (2001). Roles of the proximal heme thiolate ligand in cytochrome P450cam. Journal of the American Chemical Society, 123(21), 4877–4885.

    CAS  Article  Google Scholar 

  24. Yoshioka, S., Takahashi, S., Ishimori, K., & Morishima, I. (2000). Roles of the axial push effect in cytochrome P450cam studied with the site-directed mutagenesis at the heme proximal site. Journal of Inorganic Biochemistry, 81(3), 141–151.

    CAS  Article  Google Scholar 

  25. Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents. Nature, 409, 241–246.

    CAS  Article  Google Scholar 

  26. Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., & Deisenhofer, J. (1993). Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science, 261, 731–736.

    CAS  Article  Google Scholar 

  27. Torres, E., Siminovich, B., Barzana, E., & Vazquez-Duhalt, R. (1998). Thermodynamic hydrophobicity of aqueous mixtures of water-miscible organic solvents predicts peroxidase activity. Journal of Molecular Catalysis B: Enzymatic, 4(3), 155–159.

    CAS  Article  Google Scholar 

Download references


We are grateful to DGAPA-UNAM program providing postdoctoral fellowship to R.K. We also thank Dr. Katrin Quester for her excellent technical assistance throughout the study.


This work has been funded by the National Council of Science and Technology (CONACYT), (grants IFC 2015-1 and SEP-CONACYT-251241).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rafael Vazquez-Duhalt.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koyani, R.D., Vazquez-Duhalt, R. Enzymatic Activation of the Emerging Drug Resveratrol. Appl Biochem Biotechnol 185, 248–256 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Cytochrome P450
  • Enzymatic transformation
  • Piceatannol
  • Prodrug activation
  • Resveratrol