Skip to main content

Production and Biotechnological Application of Extracellular Alkalophilic Lipase from Marine Macroalga-Associated Shewanella algae to Produce Enriched C20-22 n-3 Polyunsaturated Fatty Acid Concentrate

Abstract

An extracellular alkalophilic lipase was partially purified from heterotrophic Shewanella algae (KX 272637) associated with marine macroalgae Padina gymnospora. The enzyme possessed a molecular mass of 20 kD, and was purified 60-fold with a specific activity of 36.33 U/mg. The enzyme exhibited Vmax and Km of 1000 mM/mg/min and 157 mM, respectively, with an optimum activity at 55 °C and pH 10.0. The catalytic activity of the enzyme was improved by Ca2+ and Mg2+ ions, and the enzyme showed a good tolerance towards organic solvents, such as methanol, isopropanol, and ethanol. The purified lipase hydrolyzed the refined liver oil from leafscale gulper shark Centrophorus squamosus, yielding a total C20-22 n-3 PUFA concentration of 34.99% with EPA + DHA accounting the major share (34% TFA), after 3 h of hydrolysis. This study recognized the industrial applicability of the thermostable and alkalophilic lipase from marine macroalga-associated bacterium Shewanella algae to produce enriched C20-22 n-3 polyunsaturated fatty acid concentrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Van Heuvel, M., & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15, 29–63.

    CAS  Article  Google Scholar 

  2. Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S., & Tominaga, Y. (1992). Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. Journal of Biochemistry, 112, 598–603.

    CAS  Article  Google Scholar 

  3. Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396–403.

    CAS  Article  Google Scholar 

  4. Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Review of Microbiology, 53, 315–351.

    CAS  Article  Google Scholar 

  5. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.

    CAS  Article  Google Scholar 

  6. Harris, W. S. (1998). Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. Journal of Lipid Research, 30, 785–807.

    Google Scholar 

  7. Matori, M., Asahara, T., & Ota, Y. (1991). Positional specificity of microbial lipases. Journal of Fermentation and Bioengineering, 72, 397–398.

    CAS  Article  Google Scholar 

  8. Sabu, A. (2003). Sources, properties and applications of microbial therapeutic enzymes. Indian Journal of Biotechnology, 2, 334–341.

    CAS  Google Scholar 

  9. Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.

    CAS  Article  Google Scholar 

  10. Gupta, S., Sharma, P., Dev, K., & Sourirajan, A. (2016). Halophilic bacteria of Lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochemistry Research International, 2016, 10.

  11. Zhang, C., & Kim, S. K. (2010). Research and application of marine microbial enzymes: status and prospects. Marine Drugs, 8, 1920–1934.

    CAS  Article  Google Scholar 

  12. Khotimchenko, S. V., Vaskovsky, V. E., & Titlyanova, T. V. (2002). Fatty acids of marine algae from the Pacific coast of North California. Botanica Marina, 45, 17–22.

    CAS  Article  Google Scholar 

  13. Sanchez-Machado, D. I., Lopez-Cervantes, J., Lopez-Hernández, J., & Paseiro-Losada, P. (2004). Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chemistry, 85, 439–444.

    CAS  Article  Google Scholar 

  14. Chakraborty, K., & Paulraj, R. (2008). Enrichment of eicosapentaenoic acid from sardine oil with Δ5-olefinic bond specific lipase from Bacillus licheniformis MTCC 6824. Journal of Agricultural and Food Chemistry, 56, 1428–1433.

    CAS  Article  Google Scholar 

  15. Henne, A., Schmitz, R. A., Bömeke, M., Gottschalk, G., & Daniel, R. (2000). Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Applied and Environmental Microbiology, 66, 3113–3116.

    CAS  Article  Google Scholar 

  16. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  Article  Google Scholar 

  17. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.

    CAS  Article  Google Scholar 

  18. Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138, 663–670.

    CAS  Google Scholar 

  19. Chakraborty, K., & Raj, R. P. (2008). An extra-cellular alkaline metallolipase from Bacillus licheniformis MTCC 6824: purification and biochemical characterization. Food Chemistry, 109, 727–736.

    CAS  Article  Google Scholar 

  20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  Article  Google Scholar 

  21. Lesuisse, E., Schanck, K., & Colson, C. (1993). Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. European Journal of Biochemistry, 216, 155–160.

    CAS  Article  Google Scholar 

  22. Ghanem, E. H., Al-Sayed, H. A., & Saleh, K. M. (2000). An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World Journal of Microbiology and Biotechnology, 16, 459–464.

    CAS  Article  Google Scholar 

  23. Chattopadhyay, M., Banik, A. K., & Raychaudhuri, S. (1999). Production and purification of lipase by a mutant strain of Rhizopus arrhizus. Folia Microbiologica, 44, 37–40.

    CAS  Article  Google Scholar 

  24. Dharmsthiti, S., & Luchai, S. (1999). Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiology Letters, 179, 241–246.

    CAS  Article  Google Scholar 

  25. Kundu, M., Basu, J., Guchhait, M., & Chakrabarti, P. (1987). Isolation and characterization of an extracellular lipase from the conidia of Neurospora crassa. Microbiology, 133, 149–153.

    CAS  Article  Google Scholar 

  26. Abdou, A. M. (2003). Purification and partial characterization of psychrotrophic Serratia marcescens lipase. Journal of Dairy Science, 87, 127–132.

    Article  Google Scholar 

  27. Matsumae, H., & Shibatani, T. (1994). Purification and characterization of the lipase from Serratia marcescens Sr41 8000 responsible for asymmetric hydrolysis of 3-phenylglycidic acid esters. Journal of Fermentation and Bioengineering, 77, 152–158.

    CAS  Article  Google Scholar 

  28. Landass, A., & Solberg, P. (1978). Production and characterization of lipase from a fluorescent Pseudomonad. In 20th International Dairy Congress, Paris E, pp 304–305.

  29. Fox, P. F., & Stepaniak, L. (1983). Isolation and some properties of extracellular heat-stable lipases from Pseudomonas fluorescens strain AFT 36. The Journal of Dairy Research, 50, 77–89.

    CAS  Article  Google Scholar 

  30. Ghori, M. I., Iqbal, M. J., & Hameed, A. (2011). Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Brazilian Journal of Microbiology, 42, 22–29.

    CAS  Article  Google Scholar 

  31. Abol Fotouh, D. M., Bayoumi, R. A., & Hassan, M. A. (2016). Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme Research, 2016, 9.

    Article  Google Scholar 

  32. Ebrahimpour, A., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2011). High level expression and characterization of a novel thermostable, organic solvent tolerant, 1, 3-regioselective lipase from Geobacillus sp. strain ARM. Bioresource Technology, 102, 6972–6981.

    CAS  Article  Google Scholar 

  33. Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S. S., & Gupta, R. (2005). Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 41, 38–44.

    CAS  Article  Google Scholar 

  34. Akbas, F., Arman, K., Sinirlioglu, Z. A., & Sinirlioglu, D. (2015). Molecular cloning and characterization of novel thermostable lipase from Shewanella putrefaciens and using enzymatic biodiesel production. Journal of Microbiology, Biotechnology and Food Science, 4, 297–300.

    CAS  Article  Google Scholar 

  35. Whangsuk, W., Sungkeeree, P., Thiengmag, S., Kerdwong, J., Sallabhan, R., Mongkolsuk, S., & Loprasert, S. (2013). Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production. Molecular Biotechnology, 53, 55–62.

    CAS  Article  Google Scholar 

  36. Klibanov, A. (2001). Improving enzymes by using them in organic solvents. Nature, 409, 241–246.

    CAS  Article  Google Scholar 

  37. Dudev, T., & Lim, C. (2008). Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annual Review of Biophysics, 37, 97–116.

    CAS  Article  Google Scholar 

  38. Vieille, C., Epting, K. L., Kelly, R. M., & Zeikus, J. G. (2001). Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. European Journal of Biochemistry, 268, 6291–6301.

    CAS  Article  Google Scholar 

  39. Epting, K. L., Vieille, C., Zeikus, J. G., & Kelly, R. M. (2005). Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases. The FEBS Journal, 272, 1454–1464.

    CAS  Article  Google Scholar 

  40. Kim, K., Kwon, D. Y., Yoon, S. H., Kim, W. Y., & Kim, K. H. (2005). Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase. Protein Expression and Purification, 39, 124–129.

    CAS  Article  Google Scholar 

  41. Balaji, L., & Jayaraman, G. (2014). Metal ion activated lipase from halotolerant Bacillus sp. VITL8 displays broader operational range. International Journal of Biological Macromolecules, 67, 380–386.

    CAS  Article  Google Scholar 

  42. Shah, K., & Bhatt, S. A. (2011). Purification and characterization of lipase from Bacillus subtilis Pa2. Journal of Biochemical Technology, 3, 292–295.

    CAS  Google Scholar 

  43. Kanaya, S., Oobatake, M., & Liu, Y. (1996). Thermal stability of Escherichia coli ribonuclease HI and its active site mutants in the presence and absence of the Mg2+ ion proposal of a novel catalytic role for Glu 48. The Journal of Biological Chemistry, 271, 32729–32736.

    CAS  Article  Google Scholar 

  44. Neelambari, V., Vasanthabharathi, V., Balasubramanian, R., & Jayalakshmi, S. (2011). Lipase from marine Aeromonas hydrophila. Research Journal of Microbiology, 6, 658–668.

    CAS  Article  Google Scholar 

  45. Nawani, N., & Kaur, J. (2000). Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp. J33. Molecular and Cellular Biochemistry, 206, 91–96.

    CAS  Article  Google Scholar 

  46. Jurgens, R., Becker, W., & Kornhuber, H. H. (1981). Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biological Cybernetics, 39, 87–96.

    CAS  Article  Google Scholar 

  47. Lanka, S., & Latha, J. L. (2015). Purification and characterization of a new cold active lipase, EnL a from Emericella nidulans NFCCI 3643. African Journal of Biotechnology, 14, 1897–1909.

    CAS  Google Scholar 

  48. Chakraborty, K., & Raj, R. P. (2009). Selective enrichment of n-3 polyunsaturated fatty acids with C 18-C 20 acyl chain length from sardine oil using Pseudomonas fluorescens MTCC 2421 lipase. Food Chemistry, 114, 142–150.

    CAS  Article  Google Scholar 

  49. Huang, K. H., & Akoh, C. C. (1994). Lipase-catalyzed incorporation of n-3 polyunsaturated fatty acids into vegetable oils. Journal of the American Oil Chemists’ Society, 71, 1277–1280.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, Central Marine Fisheries Research Institute for support. Thanks are due to the Head, Marine Biotechnology Division, Central Marine Fisheries Research Institute for facilitating the research activity.

Funding

This work is supported by the funding under the Science and Engineering Research Board of Department of Science and Technology (SR/S0/HS-0124/2012), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kajal Chakraborty.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Joseph, D., Chakraborty, K. Production and Biotechnological Application of Extracellular Alkalophilic Lipase from Marine Macroalga-Associated Shewanella algae to Produce Enriched C20-22 n-3 Polyunsaturated Fatty Acid Concentrate. Appl Biochem Biotechnol 185, 55–71 (2018). https://doi.org/10.1007/s12010-017-2636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2636-8

Keywords

  • Shewanella alage
  • Alkalophilic lipase
  • Leafscale gulper
  • Shark liver oil
  • Lipase-catalyzed hydrolysis
  • C20-22 n-3 polyunsaturated fatty acid concentrate