Skip to main content
Log in

Comparison of One-Stage Batch and Fed-Batch Enzymatic Hydrolysis of Pretreated Hardwood for the Production of Biosugar

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fed-batch method has shown a great promise in debottlenecking the high-solid enzymatic hydrolysis for the commercialization of cellulosic biosugar conversion for biofuel/biochemical production. To further improve enzymatic hydrolysis efficiency at high solid loading, fed-batch methods of green liquor-pretreated hardwood were performed to evaluate their effects on sugar recovery by comparing with one-stage batch method in this study. Among all the explored conditions, the fed-batch at 15% consistency gave higher sugar recovery on green liquor-pretreated hardwood compared to that of one-stage batch. By using general linear model analysis, the percentage of enzymatic sugar recovery in fed-batch consistency method (increasing consistency from the initial 10.7 to 15% at intervals of 24 and 48 h) was higher than that of batch hydrolysis at higher density of 15% consistency. Under that best fed-batch condition, the total sugar recovery of pretreated hardwood in enzymatic hydrolysate reached approximately 48.41% at Cellic® enzyme loading of 5 filter-paper unit (FPU)/g and 58.83% at Cellic® enzyme loading of 10 FPU/g with a hydrolysis time of 96 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim, Y., Ximenes, E., Mosier, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48, 408–415.

    Article  CAS  Google Scholar 

  2. Xu, J., Wang, Z., & Cheng, J. J. (2011). Bermuda grass as feedstock for biofuel production: A review. Bioresource Technology, 102, 7613–7620.

    Article  CAS  Google Scholar 

  3. Amidon, T., Wood, C., Shupe, A., Wang, Y., Graves, M., & Liu, S. (2008). Biorefinery: Conversion of woody biomass to chemicals, energy, and materials. J Biobased Materials and Bioenergy, 2, 100–120.

    Article  Google Scholar 

  4. Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, 5270–5295.

    Article  CAS  Google Scholar 

  5. Yu, Z., Jameel, H., Chang, H., & Park, S. (2011). The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresource Technology, 102, 9083–9089.

    Article  CAS  Google Scholar 

  6. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  7. Ertas, M., Han, Q., Jameel, H., & Chang, H. M. (2014a). Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresource Technology, 152, 259–266.

    Article  CAS  Google Scholar 

  8. Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Tren. Biofuels. Bioprod. Bioref., 2, 26–40.

    Article  CAS  Google Scholar 

  9. Rosgaard, L., Andric, P., Johansen, K. D., Pedersen, S., & Meyer, A. S. (2007). Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Applied Biochemistry and Biotechnology, 143, 27–40.

    Article  CAS  Google Scholar 

  10. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  11. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  12. Wu, S. F., Chang, H. M., Jameel, H., & Phillips, R. (2010). Novel green liquor pretreatment of loblolly pine chips to facilitate enzymatic hydrolysis into fermentable sugars for ethanol production. Journal of Wood Chemistry and Technology, 30, 205–218.

    Article  Google Scholar 

  13. Gu, F., Yang, L. F., Jin, Y. C., & Han, Q. (2012). Green liquor pretreatment for improving enzymatic hydrolysis of corn stover. Bioresource Technology, 124, 299–305.

    Article  CAS  Google Scholar 

  14. Jin, Y. C., Jameel, H., Chang, H. M., & Phillips, R. (2010). Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill. Journal of Wood Chemistry and Technology, 30, 86–104.

    Article  CAS  Google Scholar 

  15. Batalha, L. A. R., Han, Q., Jameel, H., Chang, H. M., Colodette, J. L., & Gomes, F. J. B. (2015). Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresource Technology, 180, 97–105.

    Article  CAS  Google Scholar 

  16. Ertas, M., Han, Q., & Jameel, H. (2014b). Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery. Bioresource Technology, 169, 1–8.

    Article  CAS  Google Scholar 

  17. Han, Q., Jin, Y., Jameel, H., Chang, H. M., Phillips, R., & Park, S. (2014). Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Applied Biochemistry and Biotechnology, 175, 1193–1210.

    Article  Google Scholar 

  18. Jones, B. W., Venditti, R., Park, S., Jameel, H., & Koo, B. (2013). Enhancement in enzymatic hydrolysis by mechanical refining for pretreated hardwood lignocellulosics. Bioresource Technology, 147, 353–360.

    Article  CAS  Google Scholar 

  19. Yang, M. H., Li, W. L., Liu, B. B., Li, Q., & Xing, J. M. (2010). High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresource Technology, 101, 4884–4888.

    Article  CAS  Google Scholar 

  20. Zhao, X. B., Dong, L., Chen, L., & Liu, D. H. (2013). Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers. Bioresource Technology, 135, 350–356.

    Article  CAS  Google Scholar 

  21. Wanderley, M. C. D. A., Martín, C., Rocha, G. J. D. M., & Gouveia, E. R. (2013). Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresource Technology, 128, 448–453.

    Article  Google Scholar 

  22. Rudolf, A., Alkasrawi, M., Zacchi, G., & Lidén, G. (2005). A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology, 37, 195–204.

    Article  CAS  Google Scholar 

  23. Mumford, J. A., & Nichols, T. (2009). Simple group fMRI modeling and inference. NeuroImage, 47, 1469–1475.

    Article  Google Scholar 

  24. Lindquist, M. A., Spicer, J., Asllani, I., & Wager, T. D. (2012). Estimating and testing variance components in a multi-level GLM. Geuroimage, 59, 490–501.

    Article  Google Scholar 

  25. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2005a). Determination of extractives in biomass. laboratory analytical procedure, NREL, Report No. TP-510–1617.

  26. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. laboratory analytical procedure, NREL, Report No. TP-510–42618.

  27. Xue, Y., Rusli, J., Chang, H. M., Phillips, R., & Jameel, H. (2012). Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars. Applied Biochemistry and Biotechnology, 166, 839–855.

    Article  CAS  Google Scholar 

  28. McCullaph, P., & Nelder, J. A. (2002). Generalized linear models (p. 511). London: Chapman and Hall.

    Google Scholar 

  29. Schwarz, M., & Zimmermann, N. E. (2005). A new GLM-based method for mapping tree cover continuous fields using regional MODIS reflectance data. Remote Sensing of Environment, 95, 428–443.

    Article  Google Scholar 

  30. Dai, W., Word, D. P., & Hahn, J. (2014). Modeling and dynamic optimization of fuel-grade ethanol fermentation using fed-batch process. Control Engineering Practice, 22, 231–241.

    Article  Google Scholar 

  31. Redding, A. P., Wang, Z. Y., Keshwani, D. R., & Cheng, J. J. (2011). High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresource Technology, 102, 1415–1424.

    Article  CAS  Google Scholar 

  32. Tomás-Pejó, E., Oliva, J. M., González, A., Ballesteros, I., & Ballesteros, M. (2009). Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel, 88, 2142–2147.

    Article  Google Scholar 

  33. Chang, Y. H., Chang, K. S., Huang, C. W., Hsu, C. L., & Jang, H. D. (2012). Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production. Fuel, 97, 166–173.

    Article  CAS  Google Scholar 

  34. Khamseh, A. A. G., & Miccio, M. (2012). Comparison of batch, fed-batch and continuous well-mixed reactors for enzymatic hydrolysis of orange peel wastes. Process Biochemistry, 47, 1588–1594.

    Article  Google Scholar 

  35. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  36. Corrêa, L. J., Badino, A. C., & Cruz, A. J. (2016). Mixing design for enzymatic hydrolysis of sugarcane bagasse: Methodology for selection of impeller configuration. Bioprocess and Biosystems Engineering, 39, 285–294.

    Article  Google Scholar 

  37. Cavalcanti-Montaño, I. D., Suarez, C. A. G., Giordano, R. D. L. C., Giordano, R. D. C., & Júnior, R. D. S. (2013). Optimal bioreactor operational policies for the enzymatic hydrolysis of sugarcane bagasse. Bioenergy Research, 6, 776–785.

    Article  Google Scholar 

  38. Gao, Y. S., Xu, J. L., Yuan, Z. H., Zhang, Y., Liu, Y. Y., & Liang, C. Y. (2014). Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresource Technology, 167, 41–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Dhana Savithri in the Integrated Biomass Research Initiative Laboratory of North Carolina State University for her help on the statistical analysis.

Funding

This work was funded by the Wood-to-Ethanol Research Consortium (WERC) of which the members include International Paper, Andritz, VTT, Nalco, Shell, Genencor, Eastman Chemical, and Air Liquide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Han, Q., Jameel, H. et al. Comparison of One-Stage Batch and Fed-Batch Enzymatic Hydrolysis of Pretreated Hardwood for the Production of Biosugar. Appl Biochem Biotechnol 184, 1441–1452 (2018). https://doi.org/10.1007/s12010-017-2633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2633-y

Keywords

Navigation