Skip to main content
Log in

Nephrotoxicity Induced by Cisplatin Intake in Experimental Rats and Therapeutic Approach of Using Mesenchymal Stem Cells and Spironolactone

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chronic kidney disease may lead to subsequent tissue fibrosis. However, many factors can combat injurious stimuli in these tissues aiming to repair, heal, and alleviate any disturbance. Chemokines release, migration of inflammatory cells to the affected site, and activation of fibroblasts for the production of extracellular matrix are commonly observed in this disease. In the last years, many studies have focused on spironolactone (SPL), a mineralocorticoid receptor antagonist, and its pharmacological effects. In the present study, SPL was selected as an anti-inflammatory agent to combat nephrotoxicity and renal fibrosis induced by cisplatin. Mesenchymal stem cells (MSCs) were also selected in addition as a referring agent. Renal fibrosis induced by cisplatin intake significantly increased creatinine, urea, nuclear factor kappa B, insulin-like growth factor-1, fibroblast growth factor-23, and kidney malondialdehyde (MDA) content. Hepatocyte growth factor and renal content of reduced glutathione demonstrated a significant decrease. Histopathological examination of kidney tissues demonstrated marked cellular changes which are correlated with the biochemical results. Oral SPL intake (20 mg/kg/body weight) daily for 4 weeks and MSCs administration (3 × 106 cell/rat) intravenous to the experimental rats resulted in a significant improvement of both the biomarkers studied and the histopathological profile of the renal tissue. Individual administration of spironolactone and MSCs exhibited a marked anti-inflammatory potential and alleviated to a great extent the nephrotoxicity and renal fibrotic pattern induced by cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cepeda, V., Fuertes, M. A., Castilla, J., Alonso, C., Quevedo, C., & Perez, J. M. (2007). Biochemical mechanisms of cisplatin cytotoxicity. Anti-Cancer Agents in Medicinal Chemistry, 7(1), 3–18.

    Article  CAS  Google Scholar 

  2. Sancho-Martinez, S. M., Prieto-Garcia, L., Prieto, M., Lopez-Novoa, J. M., & Lopez-Hernandez, F. J. (2012). Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacology & Therapeutics, 136(1), 35–55.

    Article  CAS  Google Scholar 

  3. Zhao, J.-l., Zhao, J., & Jiao, H.-j. (2014). Synergistic growth-suppressive effects of quercetin and cisplatin on HepG2 human hepatocellular carcinoma cells. Applied Biochemistry and Biotechnology, 172(2), 784–791.

    Article  CAS  Google Scholar 

  4. Liu, Y. (2004). Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. American journal of physiology Renal Physiology, 287(1), F7–16.

    Article  CAS  Google Scholar 

  5. Eddy, A. A. (2000). Molecular basis of renal fibrosis. Pediatric Nephrology, 15(3–4), 290–301.

    Article  CAS  Google Scholar 

  6. Klahr, S., & Morrissey, J. (2002). Obstructive nephropathy and renal fibrosis. American Journal of Physiology Renal Physiology, 283(5), F861–F875.

    Article  Google Scholar 

  7. Eddy, A. A. (1996). Molecular insights into renal interstitial fibrosis. Journal of the American Society of Nephrology : JASN, 7(12), 2495–2508.

    CAS  Google Scholar 

  8. Strutz, F., Zeisberg, M., Hemmerlein, B., Sattler, B., Hummel, K., Becker, V., & Muller, G. A. (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney International, 57(4), 1521–1538.

    Article  CAS  Google Scholar 

  9. el Nahas, A. M., Muchaneta-Kubara, E. C., Essawy, M., & Soylemezoglu, O. (1997). Renal fibrosis: insights into pathogenesis and treatment. The International Journal of Biochemistry & Cell Biology, 29(1), 55–62.

    Article  CAS  Google Scholar 

  10. Boor, P., Ostendorf, T., & Floege, J. (2010). Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nature Reviews. Nephrology, 6(11), 643–656.

    Article  Google Scholar 

  11. Decleves, A. E., & Sharma, K. (2014). Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nature Reviews. Nephrology, 10(5), 257–267.

    Article  CAS  Google Scholar 

  12. Ziyadeh, F. N., Hoffman, B. B., Han, D. C., Iglesias-De La Cruz, M. C., Hong, S. W., Isono, M., Chen, S., McGowan, T. A., & Sharma, K. (2000). Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 8015–8020.

    Article  CAS  Google Scholar 

  13. Chen, S., Iglesias-de la Cruz, M. C., Jim, B., Hong, S. W., Isono, M., & Ziyadeh, F. N. (2003). Reversibility of established diabetic glomerulopathy by anti-TGF-beta antibodies in db/db mice. Biochemical and Biophysical Research Communications, 300(1), 16–22.

    Article  CAS  Google Scholar 

  14. Guan, Q., Li, S., Gao, S., Chen, H., Nguan, C. Y., & Du, C. (2013). Reduction of chronic rejection of renal allografts by anti-transforming growth factor-beta antibody therapy in a rat model. American journal of physiology Renal Physiology, 305(2), F199–F207.

    Article  CAS  Google Scholar 

  15. Williams, S. J., Zammit, S. C., Cox, A. J., Shackleford, D. M., Morizzi, J., Zhang, Y., Powell, A. K., Gilbert, R. E., Krum, H., & Kelly, D. J. (2013). 3′,4′-Bis-difluoromethoxycinnamoylanthranilate (FT061): an orally-active antifibrotic agent that reduces albuminuria in a rat model of progressive diabetic nephropathy. Bioorganic & Medicinal Chemistry Letters, 23(24), 6868–6873.

    Article  CAS  Google Scholar 

  16. Sharma, K., McCue, P., & Dunn, S. R. (2003). Diabetic kidney disease in the db/db mouse. American journal of physiology Renal Physiology, 284(6), F1138–F1144.

    Article  CAS  Google Scholar 

  17. Negri, A. L. (2004). Prevention of progressive fibrosis in chronic renal diseases: antifibrotic agents. Journal of Nephrology, 17(4), 496–503.

    CAS  Google Scholar 

  18. Zeisberg, M., & Kalluri, R. (2008). Reversal of experimental renal fibrosis by BMP-7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatric Nephrology, 23(9), 1395–1398.

    Article  Google Scholar 

  19. Lippincott's Illustrated Pharmacology Review. 1997: p. 232.

  20. Cai, C., L. Hou, J. Zhang, D. Zhao, Z. Wang, H. Hu, J. He, W. Guan, and Y. Ma, (2017) The inhibitory effect of mesenchymal stem cells with rAd-NK4 on liver cancer. Applied Biochemistry and Biotechnology, p. 1–16.

  21. Wu, H. T., Sie, S. S., Kuan, T. C., & Lin, C. S. (2013). Identifying the regulative role of NF-κB binding sites within promoter region of human matrix metalloproteinase 9 (mmp-9) by TNF-α induction. Applied Biochemistry and Biotechnology, 169(2), 438–449.

    Article  CAS  Google Scholar 

  22. Hassan, H. A., & El-Gharib, N. E. (2015). Obesity and clinical riskiness relationship: therapeutic management by dietary antioxidant supplementation—a review. Applied Biochemistry and Biotechnology, 176(3), 647–669.

    Article  CAS  Google Scholar 

  23. Chen, X., & Xu, C. (2017). Proteomic analysis reveals the contribution of TGFβ/Smad4 signaling pathway to cell differentiation during planarian tail regeneration. Applied Biochemistry and Biotechnology, 182(2), 529–545.

    Article  CAS  Google Scholar 

  24. Imberti, B., Morigi, M., Tomasoni, S., Rota, C., Corna, D., Longaretti, L., Rottoli, D., Valsecchi, F., Benigni, A., & Wang, J. (2007). Insulin-like growth factor-1 sustains stem cell-mediated renal repair. Journal of the American Society of Nephrology, 18(11), 2921–2928.

    Article  CAS  Google Scholar 

  25. Eliopoulos, N., Zhao, J., Bouchentouf, M., Forner, K., Birman, E., Yuan, S., Boivin, M.-N., & Martineau, D. (2010). Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. American Journal of Physiology-Renal Physiology, 299(6), F1288–F1298.

    Article  CAS  Google Scholar 

  26. Lee, R. H., Seo, M. J., Reger, R. L., Spees, J. L., Pulin, A. A., Olson, S. D., & Prockop, D. J. (2006). Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences, 103(46), 17438–17443.

    Article  CAS  Google Scholar 

  27. Ezquer, F. E., Ezquer, M. E., Parrau, D. B., Carpio, D., Yañez, A. J., & Conget, P. A. (2008). Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biology of Blood and Marrow Transplantation, 14(6), 631–640.

    Article  CAS  Google Scholar 

  28. Ezquer, F., Ezquer, M., Simon, V., Pardo, F., Yañez, A., Carpio, D., & Conget, P. (2009). Endovenous administration of bone marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biology of Blood and Marrow Transplantation, 15(11), 1354–1365.

    Article  CAS  Google Scholar 

  29. Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: isolation and therapeutics. Stem Cells and Development, 13(4), 436–448.

    Article  CAS  Google Scholar 

  30. Jiang, P., Dong, Z., Ma, B., Ni, Z., Duan, H., Li, X., Wang, B., Ma, X., Wei, Q., & Ji, X. (2016). Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Applied Biochemistry and Biotechnology, 180(5), 841–851.

    Article  CAS  Google Scholar 

  31. Brilla, C. G., Matsubara, L. S., & Weber, K. T. (1993). Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. The American Journal of Cardiology, 71(3), A12–A16.

    Article  Google Scholar 

  32. Aziz, M. A., Atta, H., Mahfouz, S., Fouad, H., Roshdy, N., Ahmed, H., Rashed, L., Sabry, D., Hassouna, A., & Hasan, N. (2007). Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical Biochemistry, 40(12), 893–899.

    Article  Google Scholar 

  33. Aziz, M. A., Atta, H., Roshdy, N. K., Ahmed, H. H., Rashed, L. A., Obaia, E., Sabry, D., & Ahmed, A. (2010). Role of SDF-1/CXCR4 axis in stem cell homing in the mouse model of induced lung fibrosis. International Journal Biotechnology Biochemistry, 6(4), 625–644.

    Google Scholar 

  34. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 334–340.

    Article  Google Scholar 

  35. Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882–888.

    CAS  Google Scholar 

  36. Mortezaee, K., N. Khanlarkhani, F. Sabbaghziarani, S. Nekoonam, J. Majidpoor, A. Hosseini, P. Pasbakhsh, I.R. Kashani, and A. Zendedel, (2017). Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell and Tissue Research, p. 1–10.

  37. Yi, X., Li, X., Zhou, Y., Ren, S., Wan, W., Feng, G., & Jiang, X. (2014). Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. International Journal of Molecular Medicine, 34(2), 381–390.

    Article  CAS  Google Scholar 

  38. Dury, R. A., & A.E. W. (1980). Histological Techniques (5th ed.pp. 27–29). Oxford: N. Y., Toronto.

    Google Scholar 

  39. Liu, Y. (2006). Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney International, 69(2), 213–217.

    Article  CAS  Google Scholar 

  40. Rangan, G. K., Pippin, J. W., Coombes, J. D., & Couser, W. G. (2005). C5b-9 does not mediate chronic tubulointerstitial disease in the absence of proteinuria. Kidney International, 67(2), 492–503.

    Article  CAS  Google Scholar 

  41. Rangan, G. K., Pippin, J. W., & Couser, W. G. (2004). C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis. Kidney International, 66(5), 1838–1848.

    Article  CAS  Google Scholar 

  42. Pan, H., Shen, Z., Mukhopadhyay, P., Wang, H., Pacher, P., Qin, X., & Gao, B. (2009). Anaphylatoxin C5a contributes to the pathogenesis of cisplatin-induced nephrotoxicity. American journal of physiology Renal Physiology, 296(3), F496–F504.

    Article  CAS  Google Scholar 

  43. Shalaby, R. H., Rashed, L. A., Ismaail, A. E., Madkour, N. K., & Elwakeel, S. H. (2014). Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. American journal of stem cells, 3(2), 83–96.

    CAS  Google Scholar 

  44. Elsherbiny, N. M., Eladl, M. A., & Al-Gayyar, M. M. (2016). Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Cytokine, 77, 26–34.

    Article  CAS  Google Scholar 

  45. Bayomi, H. S., Elsherbiny, N. M., El-Gayar, A. M., & Al-Gayyar, M. M. (2013). Evaluation of renal protective effects of inhibiting TGF-beta type I receptor in a cisplatin-induced nephrotoxicity model. European Cytokine Network, 24(4), 139–147.

    Google Scholar 

  46. Lawrence, T. (2009). The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology, 1(6), a001651.

    Article  Google Scholar 

  47. Raju, N., Sakthivel, K. M., Kannan, N., Prabhu, V. V., & Guruvayoorappan, C. (2015). Cuscuta chinensis ameliorates immunosuppression and urotoxic effect of cyclophosphamide by regulating cytokines-GM-CSF and TNF-alpha. Applied Biochemistry and Biotechnology, 176(3), 742–757.

    Article  CAS  Google Scholar 

  48. Sung, M. J., Kim, D. H., Jung, Y. J., Kang, K. P., Lee, A. S., Lee, S., Kim, W., Davaatseren, M., Hwang, J. T., Kim, H. J., Kim, M. S., Kwon, D. Y., & Park, S. K. (2008). Genistein protects the kidney from cisplatin-induced injury. Kidney International, 74(12), 1538–1547.

    Article  CAS  Google Scholar 

  49. Ramesh, G., Zhang, B., Uematsu, S., Akira, S., & Reeves, W. B. (2007). Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. American Journal of Physiology Renal Physiology, 293(1), F325–F332.

    Article  CAS  Google Scholar 

  50. Ramesh, G., Kimball, S. R., Jefferson, L. S., & Reeves, W. B. (2007). Endotoxin and cisplatin synergistically stimulate TNF-alpha production by renal epithelial cells. American Journal of Physiology Renal Physiology, 292(2), F812–F819.

    Article  CAS  Google Scholar 

  51. Sanchez-Gonzalez, P. D., Lopez-Hernandez, F. J., Lopez-Novoa, J. M., & Morales, A. I. (2011). An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Critical Reviews in Toxicology, 41(10), 803–821.

    Article  CAS  Google Scholar 

  52. Boor, P., Sebekova, K., Ostendorf, T., & Floege, J. (2007). Treatment targets in renal fibrosis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 22(12), 3391–3407.

    Article  CAS  Google Scholar 

  53. Feld, S. M., Hirschberg, R., Artishevsky, A., Nast, C., & Adler, S. G. (1995). Insulin-like growth factor I induces mesangial proliferation and increases mRNA and secretion of collagen. Kidney International, 48(1), 45–51.

    Article  CAS  Google Scholar 

  54. Johnson, D. W., Saunders, H. J., Brew, B. K., Ganesan, A., Baxter, R. C., Poronnik, P., Cook, D. I., Gyory, A. Z., Field, M. J., & Pollock, C. A. (1997). Human renal fibroblasts modulate proximal tubule cell growth and transport via the IGF-I axis. Kidney International, 52(6), 1486–1496.

    Article  CAS  Google Scholar 

  55. Wang, S., Denichilo, M., Brubaker, C., & Hirschberg, R. (2001). Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney International, 60(1), 96–105.

    Article  CAS  Google Scholar 

  56. Jones, J. I., Gockerman, A., Busby Jr., W. H., Camacho-Hubner, C., & Clemmons, D. R. (1993). Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. The Journal of Cell Biology, 121(3), 679–687.

    Article  CAS  Google Scholar 

  57. Kuemmerle, J. F. (1997). Autocrine regulation of growth in cultured human intestinal muscle by growth factors. Gastroenterology, 113(3), 817–824.

    Article  CAS  Google Scholar 

  58. Zimmermann, E. M., Li, L., Hou, Y. T., Cannon, M., Christman, G. M., & Bitar, K. N. (1997). IGF-I induces collagen and IGFBP-5 mRNA in rat intestinal smooth muscle. The American Journal of Physiology, 273(4 Pt 1), G875–G882.

    CAS  Google Scholar 

  59. Doi, T., Striker, L. J., Gibson, C. C., Agodoa, L. Y., Brinster, R. L., & Striker, G. E. (1990). Glomerular lesions in mice transgenic for growth hormone and insulinlike growth factor-I. I. Relationship between increased glomerular size and mesangial sclerosis. The American Journal of Pathology, 137(3), 541–552.

    CAS  Google Scholar 

  60. Mathews, L. S., Hammer, R. E., Behringer, R. R., D'Ercole, A. J., Bell, G. I., Brinster, R. L., & Palmiter, R. D. (1988). Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology, 123(6), 2827–2833.

    Article  CAS  Google Scholar 

  61. Quaife, C. J., Mathews, L. S., Pinkert, C. A., Hammer, R. E., Brinster, R. L., & Palmiter, R. D. (1989). Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology, 124(1), 40–48.

    Article  CAS  Google Scholar 

  62. Liu, Y., Sun, A. M., & Dworkin, L. D. (1998). Hepatocyte growth factor protects renal epithelial cells from apoptotic cell death. Biochemical and Biophysical Research Communications, 246(3), 821–826.

    Article  CAS  Google Scholar 

  63. Yo, Y., Morishita, R., Nakamura, S., Tomita, N., Yamamoto, K., Moriguchi, A., Matsumoto, K., Nakamura, T., Higaki, J., & Ogihara, T. (1998). Potential role of hepatocyte growth factor in the maintenance of renal structure: anti-apoptotic action of HGF on epithelial cells. Kidney International, 54(4), 1128–1138.

    Article  CAS  Google Scholar 

  64. Liu, Y. (2002). Hepatocyte growth factor and the kidney. Current Opinion in Nephrology and Hypertension, 11(1), 23–30.

    Article  Google Scholar 

  65. Matsumoto, K., & Nakamura, T. (2001). Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney International, 59(6), 2023–2038.

    Article  CAS  Google Scholar 

  66. Hu, M. C., Kuro-o, M., & Moe, O. W. (2010). Klotho and kidney disease. Journal of Nephrology, 23(Suppl 16), S136–S144.

    Google Scholar 

  67. Schnaper, H. W., Jandeska, S., Runyan, C. E., Hubchak, S. C., Basu, R. K., Curley, J. F., Smith, R. D., & Hayashida, T. (2009). TGF-beta signal transduction in chronic kidney disease. Frontiers in Bioscience, 14, 2448–2465.

    Article  CAS  Google Scholar 

  68. Barrera-Chimal, J., Perez-Villalva, R., Ortega, J. A., Sanchez, A., Rodriguez-Romo, R., Durand, M., Jaisser, F., & Bobadilla, N. A. (2015). Mild ischemic injury leads to long-term alterations in the kidney: amelioration by spironolactone administration. International Journal of Biological Sciences, 11(8), 892–900.

    Article  CAS  Google Scholar 

  69. Oh, Y. (2012). The insulin-like growth factor system in chronic kidney disease: pathophysiology and therapeutic opportunities. Kidney Research and Clinical Practice, 31(1), 26–37.

    Article  Google Scholar 

  70. Alexandre, C. S., Volpini, R. A., Shimizu, M. H., Sanches, T. R., Semedo, P., Di Jura, V. L., Camara, N. O., Seguro, A. C., & Andrade, L. (2009). Lineage-negative bone marrow cells protect against chronic renal failure. Stem Cells, 27(3), 682–692.

    Article  CAS  Google Scholar 

  71. Noronha, I. L., Fujihara, C. K., & Zatz, R. (2002). The inflammatory component in progressive renal disease—are interventions possible? Nephrology Dialysis Transplantation, 17(3), 363–368.

    Article  CAS  Google Scholar 

  72. Fujihara, C. K., Malheiros, D. M. A. C., Zatz, R., & de Lourdes Noronha, I. (1998). Mycophenolate mofetil attenuates renal injury in the rat remnant kidney. Kidney International, 54(5), 1510–1519.

    Article  CAS  Google Scholar 

  73. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420.

    Article  CAS  Google Scholar 

  74. Strutz, F. M. (2009). EMT and proteinuria as progression factors. Kidney International, 75(5), 475–481.

    Article  CAS  Google Scholar 

  75. Humphreys, B.D. and J.V. Bonventre, (2008). Mesenchymal stem cells in acute kidney injury. Annual Review of Medicine. 59.

  76. Villanueva, S., Céspedes, C., & Vio, C. P. (2006). Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(4), R861–R870.

    Article  CAS  Google Scholar 

  77. Duffield, J. S., & Bonventre, J. V. (2005). Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney International, 68(5), 1956–1961.

    Article  CAS  Google Scholar 

  78. Higgins, D. F., Kimura, K., Bernhardt, W. M., Shrimanker, N., Akai, Y., Hohenstein, B., Saito, Y., Johnson, R. S., Kretzler, M., & Cohen, C. D. (2007). Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. The Journal of Clinical Investigation, 117(12), 3810.

    CAS  Google Scholar 

  79. Inumaru, J., Nagano, O., Takahashi, E., Ishimoto, T., Nakamura, S., Suzuki, Y., Niwa, S. I., Umezawa, K., Tanihara, H., & Saya, H. (2009). Molecular mechanisms regulating dissociation of cell–cell junction of epithelial cells by oxidative stress. Genes to Cells, 14(6), 703–716.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the great help provided by Prof. Dr. Abdelmoniem Ali, Professor of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt, concerning the histopathological sector of the study.

Funding

There was no source of funding or grant from any organization to cover the study expenses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Elseweidy.

Ethics declarations

Competing Interests

The authors declare that there is no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elseweidy, M.M., Askar, M.E., Elswefy, S.E. et al. Nephrotoxicity Induced by Cisplatin Intake in Experimental Rats and Therapeutic Approach of Using Mesenchymal Stem Cells and Spironolactone. Appl Biochem Biotechnol 184, 1390–1403 (2018). https://doi.org/10.1007/s12010-017-2631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2631-0

Keywords

Navigation