Advertisement

Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1390–1403 | Cite as

Nephrotoxicity Induced by Cisplatin Intake in Experimental Rats and Therapeutic Approach of Using Mesenchymal Stem Cells and Spironolactone

  • Mohamed M. Elseweidy
  • Mervat E. Askar
  • Sahar E. Elswefy
  • Mohamed Shawky
Article

Abstract

Chronic kidney disease may lead to subsequent tissue fibrosis. However, many factors can combat injurious stimuli in these tissues aiming to repair, heal, and alleviate any disturbance. Chemokines release, migration of inflammatory cells to the affected site, and activation of fibroblasts for the production of extracellular matrix are commonly observed in this disease. In the last years, many studies have focused on spironolactone (SPL), a mineralocorticoid receptor antagonist, and its pharmacological effects. In the present study, SPL was selected as an anti-inflammatory agent to combat nephrotoxicity and renal fibrosis induced by cisplatin. Mesenchymal stem cells (MSCs) were also selected in addition as a referring agent. Renal fibrosis induced by cisplatin intake significantly increased creatinine, urea, nuclear factor kappa B, insulin-like growth factor-1, fibroblast growth factor-23, and kidney malondialdehyde (MDA) content. Hepatocyte growth factor and renal content of reduced glutathione demonstrated a significant decrease. Histopathological examination of kidney tissues demonstrated marked cellular changes which are correlated with the biochemical results. Oral SPL intake (20 mg/kg/body weight) daily for 4 weeks and MSCs administration (3 × 106 cell/rat) intravenous to the experimental rats resulted in a significant improvement of both the biomarkers studied and the histopathological profile of the renal tissue. Individual administration of spironolactone and MSCs exhibited a marked anti-inflammatory potential and alleviated to a great extent the nephrotoxicity and renal fibrotic pattern induced by cisplatin.

Keywords

Nephrotoxicity Cisplatin Renal fibrosis Spironolactone Nuclear factor kappa B Fibroblast growth factor-23 

Notes

Acknowledgements

We acknowledge the great help provided by Prof. Dr. Abdelmoniem Ali, Professor of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt, concerning the histopathological sector of the study.

Funding

There was no source of funding or grant from any organization to cover the study expenses.

Compliance with Ethical Standards

Competing Interests

The authors declare that there is no competing interest.

References

  1. 1.
    Cepeda, V., Fuertes, M. A., Castilla, J., Alonso, C., Quevedo, C., & Perez, J. M. (2007). Biochemical mechanisms of cisplatin cytotoxicity. Anti-Cancer Agents in Medicinal Chemistry, 7(1), 3–18.CrossRefGoogle Scholar
  2. 2.
    Sancho-Martinez, S. M., Prieto-Garcia, L., Prieto, M., Lopez-Novoa, J. M., & Lopez-Hernandez, F. J. (2012). Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacology & Therapeutics, 136(1), 35–55.CrossRefGoogle Scholar
  3. 3.
    Zhao, J.-l., Zhao, J., & Jiao, H.-j. (2014). Synergistic growth-suppressive effects of quercetin and cisplatin on HepG2 human hepatocellular carcinoma cells. Applied Biochemistry and Biotechnology, 172(2), 784–791.CrossRefGoogle Scholar
  4. 4.
    Liu, Y. (2004). Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. American journal of physiology Renal Physiology, 287(1), F7–16.CrossRefGoogle Scholar
  5. 5.
    Eddy, A. A. (2000). Molecular basis of renal fibrosis. Pediatric Nephrology, 15(3–4), 290–301.CrossRefGoogle Scholar
  6. 6.
    Klahr, S., & Morrissey, J. (2002). Obstructive nephropathy and renal fibrosis. American Journal of Physiology Renal Physiology, 283(5), F861–F875.CrossRefGoogle Scholar
  7. 7.
    Eddy, A. A. (1996). Molecular insights into renal interstitial fibrosis. Journal of the American Society of Nephrology : JASN, 7(12), 2495–2508.Google Scholar
  8. 8.
    Strutz, F., Zeisberg, M., Hemmerlein, B., Sattler, B., Hummel, K., Becker, V., & Muller, G. A. (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney International, 57(4), 1521–1538.CrossRefGoogle Scholar
  9. 9.
    el Nahas, A. M., Muchaneta-Kubara, E. C., Essawy, M., & Soylemezoglu, O. (1997). Renal fibrosis: insights into pathogenesis and treatment. The International Journal of Biochemistry & Cell Biology, 29(1), 55–62.CrossRefGoogle Scholar
  10. 10.
    Boor, P., Ostendorf, T., & Floege, J. (2010). Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nature Reviews. Nephrology, 6(11), 643–656.CrossRefGoogle Scholar
  11. 11.
    Decleves, A. E., & Sharma, K. (2014). Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nature Reviews. Nephrology, 10(5), 257–267.CrossRefGoogle Scholar
  12. 12.
    Ziyadeh, F. N., Hoffman, B. B., Han, D. C., Iglesias-De La Cruz, M. C., Hong, S. W., Isono, M., Chen, S., McGowan, T. A., & Sharma, K. (2000). Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 8015–8020.CrossRefGoogle Scholar
  13. 13.
    Chen, S., Iglesias-de la Cruz, M. C., Jim, B., Hong, S. W., Isono, M., & Ziyadeh, F. N. (2003). Reversibility of established diabetic glomerulopathy by anti-TGF-beta antibodies in db/db mice. Biochemical and Biophysical Research Communications, 300(1), 16–22.CrossRefGoogle Scholar
  14. 14.
    Guan, Q., Li, S., Gao, S., Chen, H., Nguan, C. Y., & Du, C. (2013). Reduction of chronic rejection of renal allografts by anti-transforming growth factor-beta antibody therapy in a rat model. American journal of physiology Renal Physiology, 305(2), F199–F207.CrossRefGoogle Scholar
  15. 15.
    Williams, S. J., Zammit, S. C., Cox, A. J., Shackleford, D. M., Morizzi, J., Zhang, Y., Powell, A. K., Gilbert, R. E., Krum, H., & Kelly, D. J. (2013). 3′,4′-Bis-difluoromethoxycinnamoylanthranilate (FT061): an orally-active antifibrotic agent that reduces albuminuria in a rat model of progressive diabetic nephropathy. Bioorganic & Medicinal Chemistry Letters, 23(24), 6868–6873.CrossRefGoogle Scholar
  16. 16.
    Sharma, K., McCue, P., & Dunn, S. R. (2003). Diabetic kidney disease in the db/db mouse. American journal of physiology Renal Physiology, 284(6), F1138–F1144.CrossRefGoogle Scholar
  17. 17.
    Negri, A. L. (2004). Prevention of progressive fibrosis in chronic renal diseases: antifibrotic agents. Journal of Nephrology, 17(4), 496–503.Google Scholar
  18. 18.
    Zeisberg, M., & Kalluri, R. (2008). Reversal of experimental renal fibrosis by BMP-7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatric Nephrology, 23(9), 1395–1398.CrossRefGoogle Scholar
  19. 19.
    Lippincott's Illustrated Pharmacology Review. 1997: p. 232.Google Scholar
  20. 20.
    Cai, C., L. Hou, J. Zhang, D. Zhao, Z. Wang, H. Hu, J. He, W. Guan, and Y. Ma, (2017) The inhibitory effect of mesenchymal stem cells with rAd-NK4 on liver cancer. Applied Biochemistry and Biotechnology, p. 1–16.Google Scholar
  21. 21.
    Wu, H. T., Sie, S. S., Kuan, T. C., & Lin, C. S. (2013). Identifying the regulative role of NF-κB binding sites within promoter region of human matrix metalloproteinase 9 (mmp-9) by TNF-α induction. Applied Biochemistry and Biotechnology, 169(2), 438–449.CrossRefGoogle Scholar
  22. 22.
    Hassan, H. A., & El-Gharib, N. E. (2015). Obesity and clinical riskiness relationship: therapeutic management by dietary antioxidant supplementation—a review. Applied Biochemistry and Biotechnology, 176(3), 647–669.CrossRefGoogle Scholar
  23. 23.
    Chen, X., & Xu, C. (2017). Proteomic analysis reveals the contribution of TGFβ/Smad4 signaling pathway to cell differentiation during planarian tail regeneration. Applied Biochemistry and Biotechnology, 182(2), 529–545.CrossRefGoogle Scholar
  24. 24.
    Imberti, B., Morigi, M., Tomasoni, S., Rota, C., Corna, D., Longaretti, L., Rottoli, D., Valsecchi, F., Benigni, A., & Wang, J. (2007). Insulin-like growth factor-1 sustains stem cell-mediated renal repair. Journal of the American Society of Nephrology, 18(11), 2921–2928.CrossRefGoogle Scholar
  25. 25.
    Eliopoulos, N., Zhao, J., Bouchentouf, M., Forner, K., Birman, E., Yuan, S., Boivin, M.-N., & Martineau, D. (2010). Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. American Journal of Physiology-Renal Physiology, 299(6), F1288–F1298.CrossRefGoogle Scholar
  26. 26.
    Lee, R. H., Seo, M. J., Reger, R. L., Spees, J. L., Pulin, A. A., Olson, S. D., & Prockop, D. J. (2006). Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences, 103(46), 17438–17443.CrossRefGoogle Scholar
  27. 27.
    Ezquer, F. E., Ezquer, M. E., Parrau, D. B., Carpio, D., Yañez, A. J., & Conget, P. A. (2008). Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biology of Blood and Marrow Transplantation, 14(6), 631–640.CrossRefGoogle Scholar
  28. 28.
    Ezquer, F., Ezquer, M., Simon, V., Pardo, F., Yañez, A., Carpio, D., & Conget, P. (2009). Endovenous administration of bone marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biology of Blood and Marrow Transplantation, 15(11), 1354–1365.CrossRefGoogle Scholar
  29. 29.
    Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: isolation and therapeutics. Stem Cells and Development, 13(4), 436–448.CrossRefGoogle Scholar
  30. 30.
    Jiang, P., Dong, Z., Ma, B., Ni, Z., Duan, H., Li, X., Wang, B., Ma, X., Wei, Q., & Ji, X. (2016). Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Applied Biochemistry and Biotechnology, 180(5), 841–851.CrossRefGoogle Scholar
  31. 31.
    Brilla, C. G., Matsubara, L. S., & Weber, K. T. (1993). Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. The American Journal of Cardiology, 71(3), A12–A16.CrossRefGoogle Scholar
  32. 32.
    Aziz, M. A., Atta, H., Mahfouz, S., Fouad, H., Roshdy, N., Ahmed, H., Rashed, L., Sabry, D., Hassouna, A., & Hasan, N. (2007). Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical Biochemistry, 40(12), 893–899.CrossRefGoogle Scholar
  33. 33.
    Aziz, M. A., Atta, H., Roshdy, N. K., Ahmed, H. H., Rashed, L. A., Obaia, E., Sabry, D., & Ahmed, A. (2010). Role of SDF-1/CXCR4 axis in stem cell homing in the mouse model of induced lung fibrosis. International Journal Biotechnology Biochemistry, 6(4), 625–644.Google Scholar
  34. 34.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 334–340.CrossRefGoogle Scholar
  35. 35.
    Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882–888.Google Scholar
  36. 36.
    Mortezaee, K., N. Khanlarkhani, F. Sabbaghziarani, S. Nekoonam, J. Majidpoor, A. Hosseini, P. Pasbakhsh, I.R. Kashani, and A. Zendedel, (2017). Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell and Tissue Research, p. 1–10.Google Scholar
  37. 37.
    Yi, X., Li, X., Zhou, Y., Ren, S., Wan, W., Feng, G., & Jiang, X. (2014). Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. International Journal of Molecular Medicine, 34(2), 381–390.CrossRefGoogle Scholar
  38. 38.
    Dury, R. A., & A.E. W. (1980). Histological Techniques (5th ed.pp. 27–29). Oxford: N. Y., Toronto.Google Scholar
  39. 39.
    Liu, Y. (2006). Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney International, 69(2), 213–217.CrossRefGoogle Scholar
  40. 40.
    Rangan, G. K., Pippin, J. W., Coombes, J. D., & Couser, W. G. (2005). C5b-9 does not mediate chronic tubulointerstitial disease in the absence of proteinuria. Kidney International, 67(2), 492–503.CrossRefGoogle Scholar
  41. 41.
    Rangan, G. K., Pippin, J. W., & Couser, W. G. (2004). C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis. Kidney International, 66(5), 1838–1848.CrossRefGoogle Scholar
  42. 42.
    Pan, H., Shen, Z., Mukhopadhyay, P., Wang, H., Pacher, P., Qin, X., & Gao, B. (2009). Anaphylatoxin C5a contributes to the pathogenesis of cisplatin-induced nephrotoxicity. American journal of physiology Renal Physiology, 296(3), F496–F504.CrossRefGoogle Scholar
  43. 43.
    Shalaby, R. H., Rashed, L. A., Ismaail, A. E., Madkour, N. K., & Elwakeel, S. H. (2014). Hematopoietic stem cells derived from human umbilical cord ameliorate cisplatin-induced acute renal failure in rats. American journal of stem cells, 3(2), 83–96.Google Scholar
  44. 44.
    Elsherbiny, N. M., Eladl, M. A., & Al-Gayyar, M. M. (2016). Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Cytokine, 77, 26–34.CrossRefGoogle Scholar
  45. 45.
    Bayomi, H. S., Elsherbiny, N. M., El-Gayar, A. M., & Al-Gayyar, M. M. (2013). Evaluation of renal protective effects of inhibiting TGF-beta type I receptor in a cisplatin-induced nephrotoxicity model. European Cytokine Network, 24(4), 139–147.Google Scholar
  46. 46.
    Lawrence, T. (2009). The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology, 1(6), a001651.CrossRefGoogle Scholar
  47. 47.
    Raju, N., Sakthivel, K. M., Kannan, N., Prabhu, V. V., & Guruvayoorappan, C. (2015). Cuscuta chinensis ameliorates immunosuppression and urotoxic effect of cyclophosphamide by regulating cytokines-GM-CSF and TNF-alpha. Applied Biochemistry and Biotechnology, 176(3), 742–757.CrossRefGoogle Scholar
  48. 48.
    Sung, M. J., Kim, D. H., Jung, Y. J., Kang, K. P., Lee, A. S., Lee, S., Kim, W., Davaatseren, M., Hwang, J. T., Kim, H. J., Kim, M. S., Kwon, D. Y., & Park, S. K. (2008). Genistein protects the kidney from cisplatin-induced injury. Kidney International, 74(12), 1538–1547.CrossRefGoogle Scholar
  49. 49.
    Ramesh, G., Zhang, B., Uematsu, S., Akira, S., & Reeves, W. B. (2007). Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. American Journal of Physiology Renal Physiology, 293(1), F325–F332.CrossRefGoogle Scholar
  50. 50.
    Ramesh, G., Kimball, S. R., Jefferson, L. S., & Reeves, W. B. (2007). Endotoxin and cisplatin synergistically stimulate TNF-alpha production by renal epithelial cells. American Journal of Physiology Renal Physiology, 292(2), F812–F819.CrossRefGoogle Scholar
  51. 51.
    Sanchez-Gonzalez, P. D., Lopez-Hernandez, F. J., Lopez-Novoa, J. M., & Morales, A. I. (2011). An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Critical Reviews in Toxicology, 41(10), 803–821.CrossRefGoogle Scholar
  52. 52.
    Boor, P., Sebekova, K., Ostendorf, T., & Floege, J. (2007). Treatment targets in renal fibrosis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 22(12), 3391–3407.CrossRefGoogle Scholar
  53. 53.
    Feld, S. M., Hirschberg, R., Artishevsky, A., Nast, C., & Adler, S. G. (1995). Insulin-like growth factor I induces mesangial proliferation and increases mRNA and secretion of collagen. Kidney International, 48(1), 45–51.CrossRefGoogle Scholar
  54. 54.
    Johnson, D. W., Saunders, H. J., Brew, B. K., Ganesan, A., Baxter, R. C., Poronnik, P., Cook, D. I., Gyory, A. Z., Field, M. J., & Pollock, C. A. (1997). Human renal fibroblasts modulate proximal tubule cell growth and transport via the IGF-I axis. Kidney International, 52(6), 1486–1496.CrossRefGoogle Scholar
  55. 55.
    Wang, S., Denichilo, M., Brubaker, C., & Hirschberg, R. (2001). Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney International, 60(1), 96–105.CrossRefGoogle Scholar
  56. 56.
    Jones, J. I., Gockerman, A., Busby Jr., W. H., Camacho-Hubner, C., & Clemmons, D. R. (1993). Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. The Journal of Cell Biology, 121(3), 679–687.CrossRefGoogle Scholar
  57. 57.
    Kuemmerle, J. F. (1997). Autocrine regulation of growth in cultured human intestinal muscle by growth factors. Gastroenterology, 113(3), 817–824.CrossRefGoogle Scholar
  58. 58.
    Zimmermann, E. M., Li, L., Hou, Y. T., Cannon, M., Christman, G. M., & Bitar, K. N. (1997). IGF-I induces collagen and IGFBP-5 mRNA in rat intestinal smooth muscle. The American Journal of Physiology, 273(4 Pt 1), G875–G882.Google Scholar
  59. 59.
    Doi, T., Striker, L. J., Gibson, C. C., Agodoa, L. Y., Brinster, R. L., & Striker, G. E. (1990). Glomerular lesions in mice transgenic for growth hormone and insulinlike growth factor-I. I. Relationship between increased glomerular size and mesangial sclerosis. The American Journal of Pathology, 137(3), 541–552.Google Scholar
  60. 60.
    Mathews, L. S., Hammer, R. E., Behringer, R. R., D'Ercole, A. J., Bell, G. I., Brinster, R. L., & Palmiter, R. D. (1988). Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology, 123(6), 2827–2833.CrossRefGoogle Scholar
  61. 61.
    Quaife, C. J., Mathews, L. S., Pinkert, C. A., Hammer, R. E., Brinster, R. L., & Palmiter, R. D. (1989). Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology, 124(1), 40–48.CrossRefGoogle Scholar
  62. 62.
    Liu, Y., Sun, A. M., & Dworkin, L. D. (1998). Hepatocyte growth factor protects renal epithelial cells from apoptotic cell death. Biochemical and Biophysical Research Communications, 246(3), 821–826.CrossRefGoogle Scholar
  63. 63.
    Yo, Y., Morishita, R., Nakamura, S., Tomita, N., Yamamoto, K., Moriguchi, A., Matsumoto, K., Nakamura, T., Higaki, J., & Ogihara, T. (1998). Potential role of hepatocyte growth factor in the maintenance of renal structure: anti-apoptotic action of HGF on epithelial cells. Kidney International, 54(4), 1128–1138.CrossRefGoogle Scholar
  64. 64.
    Liu, Y. (2002). Hepatocyte growth factor and the kidney. Current Opinion in Nephrology and Hypertension, 11(1), 23–30.CrossRefGoogle Scholar
  65. 65.
    Matsumoto, K., & Nakamura, T. (2001). Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney International, 59(6), 2023–2038.CrossRefGoogle Scholar
  66. 66.
    Hu, M. C., Kuro-o, M., & Moe, O. W. (2010). Klotho and kidney disease. Journal of Nephrology, 23(Suppl 16), S136–S144.Google Scholar
  67. 67.
    Schnaper, H. W., Jandeska, S., Runyan, C. E., Hubchak, S. C., Basu, R. K., Curley, J. F., Smith, R. D., & Hayashida, T. (2009). TGF-beta signal transduction in chronic kidney disease. Frontiers in Bioscience, 14, 2448–2465.CrossRefGoogle Scholar
  68. 68.
    Barrera-Chimal, J., Perez-Villalva, R., Ortega, J. A., Sanchez, A., Rodriguez-Romo, R., Durand, M., Jaisser, F., & Bobadilla, N. A. (2015). Mild ischemic injury leads to long-term alterations in the kidney: amelioration by spironolactone administration. International Journal of Biological Sciences, 11(8), 892–900.CrossRefGoogle Scholar
  69. 69.
    Oh, Y. (2012). The insulin-like growth factor system in chronic kidney disease: pathophysiology and therapeutic opportunities. Kidney Research and Clinical Practice, 31(1), 26–37.CrossRefGoogle Scholar
  70. 70.
    Alexandre, C. S., Volpini, R. A., Shimizu, M. H., Sanches, T. R., Semedo, P., Di Jura, V. L., Camara, N. O., Seguro, A. C., & Andrade, L. (2009). Lineage-negative bone marrow cells protect against chronic renal failure. Stem Cells, 27(3), 682–692.CrossRefGoogle Scholar
  71. 71.
    Noronha, I. L., Fujihara, C. K., & Zatz, R. (2002). The inflammatory component in progressive renal disease—are interventions possible? Nephrology Dialysis Transplantation, 17(3), 363–368.CrossRefGoogle Scholar
  72. 72.
    Fujihara, C. K., Malheiros, D. M. A. C., Zatz, R., & de Lourdes Noronha, I. (1998). Mycophenolate mofetil attenuates renal injury in the rat remnant kidney. Kidney International, 54(5), 1510–1519.CrossRefGoogle Scholar
  73. 73.
    Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420.CrossRefGoogle Scholar
  74. 74.
    Strutz, F. M. (2009). EMT and proteinuria as progression factors. Kidney International, 75(5), 475–481.CrossRefGoogle Scholar
  75. 75.
    Humphreys, B.D. and J.V. Bonventre, (2008). Mesenchymal stem cells in acute kidney injury. Annual Review of Medicine. 59.Google Scholar
  76. 76.
    Villanueva, S., Céspedes, C., & Vio, C. P. (2006). Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(4), R861–R870.CrossRefGoogle Scholar
  77. 77.
    Duffield, J. S., & Bonventre, J. V. (2005). Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney International, 68(5), 1956–1961.CrossRefGoogle Scholar
  78. 78.
    Higgins, D. F., Kimura, K., Bernhardt, W. M., Shrimanker, N., Akai, Y., Hohenstein, B., Saito, Y., Johnson, R. S., Kretzler, M., & Cohen, C. D. (2007). Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. The Journal of Clinical Investigation, 117(12), 3810.Google Scholar
  79. 79.
    Inumaru, J., Nagano, O., Takahashi, E., Ishimoto, T., Nakamura, S., Suzuki, Y., Niwa, S. I., Umezawa, K., Tanihara, H., & Saya, H. (2009). Molecular mechanisms regulating dissociation of cell–cell junction of epithelial cells by oxidative stress. Genes to Cells, 14(6), 703–716.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mohamed M. Elseweidy
    • 1
  • Mervat E. Askar
    • 1
  • Sahar E. Elswefy
    • 1
  • Mohamed Shawky
    • 1
    • 2
    • 3
  1. 1.Department of Biochemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt
  2. 2.Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
  3. 3.Faculty of PharmacyHorus University in EgyptNew DamiettaEgypt

Personalised recommendations