Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1142–1154 | Cite as

Conversion of Sago (Metroxylon sagu) Pith Waste to Fermentable Sugars via a Facile Depolymerization Process

Article
  • 64 Downloads

Abstract

The conversion of starchy sago (Metroxylon sagu) pith waste (SPW), a lignocellulosic biomass waste, to fermentable sugars under mild conditions had been successfully demonstrated. The optimum depolymerization of SPW was achieved at 2 wt% sample loading which was catalyzed by 100 mM of oxalic acid in the presence of 25 wt% NaCl solution at 110 °C for 3 h. Up to 97% SPW sample was being converted into fermentable sugars with limited formation of by-products after two sequential depolymerization cycles. Both reaction temperature and concentration of oxalic acid were crucial parameters for the depolymerization of SPW which exhibited a high selectivity for the production of glucose over other reducing sugars.

Keywords

Depolymerization Inorganic salt Dicarboxylic acid Lignocellulosic biomass 

Notes

Acknowledgements

The authors wish to acknowledge the financial support rendered by the Malaysian Ministry of Higher Education (MOHE) via the award of fundamental research grants (Grant No. FRGS/ST01(01)/967/2013(08) and F07/FRGS/1495/2016), as well as research management and support provided by the Research Innovation and Management Center (RIMC), Universiti Malaysia Sarawak.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, 449–467.CrossRefGoogle Scholar
  2. 2.
    Herbert, G. J., & Krishnan, A. U. (2016). Quantifying environmental performance of biomass energy. Renewable Sustainable Energy Reviews, 59, 292–308.CrossRefGoogle Scholar
  3. 3.
    Cavka, A., Guo, X., Tang, S. J., Winestrand, S., Jönsson, L. J., & Hong, F. (2013). Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnology for Biofuels, 6, 1–7.CrossRefGoogle Scholar
  4. 4.
    Jenol, M. A., Ibrahim, M. F., Yee, P. L., Salleh, M. M., & Abd-Aziz, S. (2013). Sago biomass as a sustainable source for biohydrogen production by Clostridium butyricum A1. BioResources, 9, 1007–1026.CrossRefGoogle Scholar
  5. 5.
    Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2014). Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide. Apply Energy, 128, 277–283.CrossRefGoogle Scholar
  6. 6.
    Lai, J. C., Rahman, W. A. W. A., & Toh, W. Y. (2013). Characterisation of sago pith waste and its composites. Industrial Crop Production, 45, 319–326.CrossRefGoogle Scholar
  7. 7.
    Awg-Adeni, D. S., Abd-Aziz, S., Bujang, K., & Hassan, M. A. (2010). Bioconversion of sago residue into value added products. African Journal of Biotechnology, 9, 2016–2021.Google Scholar
  8. 8.
    Linggang, S., Phang, L. Y., Wasoh, M. H., & Abd-Aziz, S. (2012). Sago pith residue as an alternative cheap substrate for fermentable sugars production. Apply Biochemistry Biotechnology, 167, 122–131.CrossRefGoogle Scholar
  9. 9.
    Demirbas, A. (2011). Competitive liquid biofuels from biomass. Apply Energy, 88, 17–28.CrossRefGoogle Scholar
  10. 10.
    Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F., & Jin, S. (2006). Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochemistry, 41, 869–873.CrossRefGoogle Scholar
  11. 11.
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.CrossRefGoogle Scholar
  12. 12.
    Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advance, 30, 1458–1480.CrossRefGoogle Scholar
  13. 13.
    Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Apply Microbiology Biotechnology, 56, 17–34.CrossRefGoogle Scholar
  14. 14.
    Fan, J., Zhu, Z., Budarin, V., Gronnow, M., Gomez, L. D., Macquarrie, D., & Clark, J. (2013). Microwave-enhanced formation of glucose from cellulosic waste. Chemical Engineering Processing: Process Intensification, 71, 37–42.CrossRefGoogle Scholar
  15. 15.
    Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37, 19–27.CrossRefGoogle Scholar
  16. 16.
    Ross, A. B., Biller, P., Kubacki, M. L., Li, H., Lea-Langton, A., & Jones, J. M. (2010). Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 89, 2234–2243.CrossRefGoogle Scholar
  17. 17.
    Sakaki, T., Shibata, M., Sumi, T., & Yasuda, S. (2002). Saccharification of cellulose using a hot-compressed water-flow reactor. Industrial Engineering Chemistry Research, 41, 661–665.CrossRefGoogle Scholar
  18. 18.
    Kang, K. E., Park, D. H., & Jeong, G. T. (2013). Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresource Technology, 132, 160–165.CrossRefGoogle Scholar
  19. 19.
    Xing, R., Liu, S., Yu, H., Guo, Z., Wang, P., Li, C., & Li, P. (2005). Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydrate Resource, 340, 2150–2153.CrossRefGoogle Scholar
  20. 20.
    Liu, L., Sun, J., Cai, C., Wang, S., Pei, H., & Zhang, J. (2009). Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresource Technology, 100, 5865–5871.CrossRefGoogle Scholar
  21. 21.
    Wongsiriwan, U., Noda, Y., Song, C., Prasassarakich, P., & Yeboah, Y. (2010). Lignocellulosic biomass conversion by sequential combination of organic acid and base treatments. Energy and Fuels, 24, 3232–3238.CrossRefGoogle Scholar
  22. 22.
    Vanoye, L., Fanselow, M., Holbrey, J. D., Atkins, M. P., & Seddon, K. R. (2009). Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chemistry, 11, 390–396.CrossRefGoogle Scholar
  23. 23.
    Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., & Sanders, J. P. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46, 126–131.CrossRefGoogle Scholar
  24. 24.
    Lee, J. W., Rodrigues, R. C., & Jeffries, T. W. (2009). Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology, 100, 6307–6311.CrossRefGoogle Scholar
  25. 25.
    Mosier, N. S., Sarikaya, A., Ladisch, C. M., & Ladisch, M. R. (2001). Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnology Progress, 17, 474–480.CrossRefGoogle Scholar
  26. 26.
    Sluiter, A., & Sluiter, J. (2008). Determination of starch in solid biomass samples by HPLC: Laboratory Analytical Procedure (LAP): Issue Date, 07/17/2005. National Renewable Energy Laboratory.Google Scholar
  27. 27.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. In Laboratory Analytic Procedure (LAP) of the National Renewable Energy Laboratory (NREL). Colorado: USA Google Scholar.Google Scholar
  28. 28.
    Liu, F., Kamat, R. K., Noshadi, I., Peck, D., Parnas, R. S., Zheng, A., & Lin, Y. (2013). Depolymerization of crystalline cellulose catalyzed by acidic ionic liquids grafted onto sponge-like nanoporous polymers. Chemical Communication, 49, 8456–8458.CrossRefGoogle Scholar
  29. 29.
    Vincent, M., Senawi, B. R. A., Esut, E., Nor, N. M., & Adeni, D. S. A. (2015). Sequential saccharification and simultaneous fermentation (SSSF) of sago hampas for the production of bioethanol. Sains Malaysian, 44, 899–904.CrossRefGoogle Scholar
  30. 30.
    Faria, P. C. C., Órfão, J. J. M., & Pereira, M. F. R. (2008). Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental , 79, 237–243.CrossRefGoogle Scholar
  31. 31.
    Mosier, N. S., Ladisch, C. M., & Ladisch, M. R. (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79, 610–618.CrossRefGoogle Scholar
  32. 32.
    vom Stein, T., Grande, P., Sibilla, F., Commandeur, U., Fischer, R., Leitner, W., & de María, P. D. (2010). Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chemistry, 12, 1844–1849.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations