Skip to main content
Log in

Conversion of Sago (Metroxylon sagu) Pith Waste to Fermentable Sugars via a Facile Depolymerization Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The conversion of starchy sago (Metroxylon sagu) pith waste (SPW), a lignocellulosic biomass waste, to fermentable sugars under mild conditions had been successfully demonstrated. The optimum depolymerization of SPW was achieved at 2 wt% sample loading which was catalyzed by 100 mM of oxalic acid in the presence of 25 wt% NaCl solution at 110 °C for 3 h. Up to 97% SPW sample was being converted into fermentable sugars with limited formation of by-products after two sequential depolymerization cycles. Both reaction temperature and concentration of oxalic acid were crucial parameters for the depolymerization of SPW which exhibited a high selectivity for the production of glucose over other reducing sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, 449–467.

    Article  CAS  Google Scholar 

  2. Herbert, G. J., & Krishnan, A. U. (2016). Quantifying environmental performance of biomass energy. Renewable Sustainable Energy Reviews, 59, 292–308.

    Article  Google Scholar 

  3. Cavka, A., Guo, X., Tang, S. J., Winestrand, S., Jönsson, L. J., & Hong, F. (2013). Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnology for Biofuels, 6, 1–7.

    Article  Google Scholar 

  4. Jenol, M. A., Ibrahim, M. F., Yee, P. L., Salleh, M. M., & Abd-Aziz, S. (2013). Sago biomass as a sustainable source for biohydrogen production by Clostridium butyricum A1. BioResources, 9, 1007–1026.

    Article  Google Scholar 

  5. Thangavelu, S. K., Ahmed, A. S., & Ani, F. N. (2014). Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide. Apply Energy, 128, 277–283.

    Article  CAS  Google Scholar 

  6. Lai, J. C., Rahman, W. A. W. A., & Toh, W. Y. (2013). Characterisation of sago pith waste and its composites. Industrial Crop Production, 45, 319–326.

    Article  CAS  Google Scholar 

  7. Awg-Adeni, D. S., Abd-Aziz, S., Bujang, K., & Hassan, M. A. (2010). Bioconversion of sago residue into value added products. African Journal of Biotechnology, 9, 2016–2021.

    CAS  Google Scholar 

  8. Linggang, S., Phang, L. Y., Wasoh, M. H., & Abd-Aziz, S. (2012). Sago pith residue as an alternative cheap substrate for fermentable sugars production. Apply Biochemistry Biotechnology, 167, 122–131.

    Article  CAS  Google Scholar 

  9. Demirbas, A. (2011). Competitive liquid biofuels from biomass. Apply Energy, 88, 17–28.

    Article  CAS  Google Scholar 

  10. Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F., & Jin, S. (2006). Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochemistry, 41, 869–873.

    Article  CAS  Google Scholar 

  11. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  12. Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advance, 30, 1458–1480.

    Article  Google Scholar 

  13. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Apply Microbiology Biotechnology, 56, 17–34.

    Article  CAS  Google Scholar 

  14. Fan, J., Zhu, Z., Budarin, V., Gronnow, M., Gomez, L. D., Macquarrie, D., & Clark, J. (2013). Microwave-enhanced formation of glucose from cellulosic waste. Chemical Engineering Processing: Process Intensification, 71, 37–42.

    Article  CAS  Google Scholar 

  15. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37, 19–27.

    Article  CAS  Google Scholar 

  16. Ross, A. B., Biller, P., Kubacki, M. L., Li, H., Lea-Langton, A., & Jones, J. M. (2010). Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 89, 2234–2243.

    Article  CAS  Google Scholar 

  17. Sakaki, T., Shibata, M., Sumi, T., & Yasuda, S. (2002). Saccharification of cellulose using a hot-compressed water-flow reactor. Industrial Engineering Chemistry Research, 41, 661–665.

    Article  CAS  Google Scholar 

  18. Kang, K. E., Park, D. H., & Jeong, G. T. (2013). Effects of inorganic salts on pretreatment of Miscanthus straw. Bioresource Technology, 132, 160–165.

    Article  CAS  Google Scholar 

  19. Xing, R., Liu, S., Yu, H., Guo, Z., Wang, P., Li, C., & Li, P. (2005). Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydrate Resource, 340, 2150–2153.

    Article  CAS  Google Scholar 

  20. Liu, L., Sun, J., Cai, C., Wang, S., Pei, H., & Zhang, J. (2009). Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresource Technology, 100, 5865–5871.

    Article  CAS  Google Scholar 

  21. Wongsiriwan, U., Noda, Y., Song, C., Prasassarakich, P., & Yeboah, Y. (2010). Lignocellulosic biomass conversion by sequential combination of organic acid and base treatments. Energy and Fuels, 24, 3232–3238.

    Article  CAS  Google Scholar 

  22. Vanoye, L., Fanselow, M., Holbrey, J. D., Atkins, M. P., & Seddon, K. R. (2009). Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chemistry, 11, 390–396.

    Article  CAS  Google Scholar 

  23. Kootstra, A. M. J., Beeftink, H. H., Scott, E. L., & Sanders, J. P. (2009). Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 46, 126–131.

    Article  CAS  Google Scholar 

  24. Lee, J. W., Rodrigues, R. C., & Jeffries, T. W. (2009). Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology, 100, 6307–6311.

    Article  CAS  Google Scholar 

  25. Mosier, N. S., Sarikaya, A., Ladisch, C. M., & Ladisch, M. R. (2001). Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnology Progress, 17, 474–480.

    Article  CAS  Google Scholar 

  26. Sluiter, A., & Sluiter, J. (2008). Determination of starch in solid biomass samples by HPLC: Laboratory Analytical Procedure (LAP): Issue Date, 07/17/2005. National Renewable Energy Laboratory.

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. In Laboratory Analytic Procedure (LAP) of the National Renewable Energy Laboratory (NREL). Colorado: USA Google Scholar.

    Google Scholar 

  28. Liu, F., Kamat, R. K., Noshadi, I., Peck, D., Parnas, R. S., Zheng, A., & Lin, Y. (2013). Depolymerization of crystalline cellulose catalyzed by acidic ionic liquids grafted onto sponge-like nanoporous polymers. Chemical Communication, 49, 8456–8458.

    Article  CAS  Google Scholar 

  29. Vincent, M., Senawi, B. R. A., Esut, E., Nor, N. M., & Adeni, D. S. A. (2015). Sequential saccharification and simultaneous fermentation (SSSF) of sago hampas for the production of bioethanol. Sains Malaysian, 44, 899–904.

    Article  CAS  Google Scholar 

  30. Faria, P. C. C., Órfão, J. J. M., & Pereira, M. F. R. (2008). Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental , 79, 237–243.

    Article  CAS  Google Scholar 

  31. Mosier, N. S., Ladisch, C. M., & Ladisch, M. R. (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79, 610–618.

    Article  CAS  Google Scholar 

  32. vom Stein, T., Grande, P., Sibilla, F., Commandeur, U., Fischer, R., Leitner, W., & de María, P. D. (2010). Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chemistry, 12, 1844–1849.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support rendered by the Malaysian Ministry of Higher Education (MOHE) via the award of fundamental research grants (Grant No. FRGS/ST01(01)/967/2013(08) and F07/FRGS/1495/2016), as well as research management and support provided by the Research Innovation and Management Center (RIMC), Universiti Malaysia Sarawak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suh Cem Pang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, S.C., Voon, L.K. & Chin, S.F. Conversion of Sago (Metroxylon sagu) Pith Waste to Fermentable Sugars via a Facile Depolymerization Process. Appl Biochem Biotechnol 184, 1142–1154 (2018). https://doi.org/10.1007/s12010-017-2616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2616-z

Keywords

Navigation