Anaerobic Digestion of Cattle Manure Influenced by Swirling Jet Induced Hydrodynamic Cavitation

  • Michela Langone
  • Mariangela Soldano
  • Claudio Fabbri
  • Francesco Pirozzi
  • Gianni Andreottola
Article

Abstract

In this work, a modified swirling jet-induced cavitation has been employed for increasing anaerobic digestion efficiency of cattle manure. The hydrodynamic cavitation (HC) treatment improved the organic matter solubilization and the anaerobic biodegradability of cattle manure. The degree of disintegration increased by 5.8, 8.9, and 15.8% after the HC treatment at 6.0, 7.0, and 8.0 bars, respectively. However, the HC treatment at 7.0 bars had better results in terms of methane production. This result may be attributed to the possible formation of toxic and refractory compounds at higher inlet pressures, which could inhibit the methanization process. Further, total Kjeldahl nitrogen content was found to decrease with increasing inlet pressures, as the pH and the turbulent mixing favored the ammonia stripping processes. HC treatment decreased the viscosity of the treated cattle manure, favoring the manure pumping and mixing. Considerations on the energy input due to the HC pre-treatment and the energy output due to the enhanced methane yield have been presented. A positive energy balance can be obtained looking at the improved operational practices in the anaerobic digesters after the implementation of the HC pre-treatment.

Keywords

Ammonia stripping Anaerobic biodegradability Cattle manure Hydrodynamic cavitation Viscosity 

Notes

Acknowledgements

This work was supported by the Fondazione Caritro, Trento, Italy (Young Researcher, Grant 2015). The authors gratefully acknowledge the Officine Parisi S.r.l. (Riva del Garda, Trento, Italy), and Eng. D. C. Waubert de Puiseau for technical support, and the CRPA (Reggio Emilia, Italy) for their analytical support.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2017_2612_MOESM1_ESM.docx (39 kb)
ESM 1 (DOCX 39 kb)

References

  1. 1.
    Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940.  https://doi.org/10.1016/j.biortech.2008.02.044.CrossRefGoogle Scholar
  2. 2.
    Castrillón, L., Fernández-Nava, Y., Ormaechea, P., & Marañón, E. (2013). Methane production from cattle manure supplemented with crude glycerin from the biodiesel industry in CSTR and IBR. Bioresource Technology, 127, 312–317.  https://doi.org/10.1016/j.biortech.2012.09.080.CrossRefGoogle Scholar
  3. 3.
    Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9, 1621–1651.  https://doi.org/10.3390/ijms9091621.CrossRefGoogle Scholar
  4. 4.
    Ghaffar, S. H., & Fan, M. (2013). Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 57, 264–279.  https://doi.org/10.1016/j.biombioe.2013.07.015.CrossRefGoogle Scholar
  5. 5.
    Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy, 26, 485–495.  https://doi.org/10.1016/j.biombioe.2003.08.008.CrossRefGoogle Scholar
  6. 6.
    Chen, Y. R. (1986). Rheological properties of sieved beef-cattle manure slurry: rheological model and effects of temperature and solids concentration. Agricultural Wastes, 15, 17–33.  https://doi.org/10.1016/0141-4607(86)90123-X.CrossRefGoogle Scholar
  7. 7.
    El-Mashad, H. M., Van Loon, W. K. P., Zeeman, G., & Bot, G. P. A. (2005). Rheological properties of dairy cattle manure. Bioresource Technology, 96, 531–535.  https://doi.org/10.1016/j.biortech.2004.06.020.CrossRefGoogle Scholar
  8. 8.
    Wu, B. (2013). Advances in the use of CFD to characterize, design and optimize bioenergy systems. Computers and Electronics in Agriculture, 93, 195–208.  https://doi.org/10.1016/j.compag.2012.05.008.CrossRefGoogle Scholar
  9. 9.
    Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.  https://doi.org/10.1016/j.rser.2014.04.039.CrossRefGoogle Scholar
  10. 10.
    Yu, L., Ma, J., & Chen, S. (2011). Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresource Technology, 102(2), 1012–1018.  https://doi.org/10.1016/j.biortech.2010.09.079.CrossRefGoogle Scholar
  11. 11.
    Chaari, F., Racineux, G., Poitou, A., & Chaouche, M. (2003). Rheological behavior of sewage sludge and strain-induced dewatering. Rheologica Acta, 42(3), 273–279.Google Scholar
  12. 12.
    Pauss, A., & Nynst, E. J. (1993). Past, present and future trends in anaerobic digestion applications. Biomass and Bioenergy, 4(4), 263–270.CrossRefGoogle Scholar
  13. 13.
    Atandi, & Rahman. (2012). Prospect of anaerobic co-digestion of dairy manure: a review. Environmental Technology Reviews, 1, 127–135.  https://doi.org/10.1080/09593330.2012.698654.CrossRefGoogle Scholar
  14. 14.
    Nasir, I. M., & Ghazi, T. I. M. (2015). Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production. Engineering in Life Sciences, 15, 733–742.  https://doi.org/10.1002/elsc.201500019.CrossRefGoogle Scholar
  15. 15.
    Angelidaki, I., & Ahring, B. K. (2000). Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41, 189–194.Google Scholar
  16. 16.
    Liao, W., Liu, Y., Liu, C., & Chen, S. (2004). Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material—dairy manure. Bioresource Technology, 94, 33–41.  https://doi.org/10.1016/j.biortech.2003.11.011.CrossRefGoogle Scholar
  17. 17.
    Liao, W., Liu, Y., Liu, C., Wen, Z., & Chen, S. (2006). Acid hydrolysis of fibers from dairy manure. Bioresource Technology, 97, 1687–1695.  https://doi.org/10.1016/j.biortech.2005.07.028.CrossRefGoogle Scholar
  18. 18.
    Niasar, H. S., Karimi, K., Zilouei, H., Salehian, P., & Jeihanipour, A. (2011). Effects of lime pretreatment on biogas production from dry dairy cattle manure. Minerva Biotecnologica, 23(4), 77–82.Google Scholar
  19. 19.
    Guarino, G., Cristofaro, F., Carotenuto, C., Minale, M., Industriale, I., Università, S., & Ce, A. (2014). Effect of thermal and mechanical pre-treatments on the CH 4 -H 2 production from water buffalo manure in different process conditions. 205–210.  https://doi.org/10.3303/CET1438035.
  20. 20.
    Raju, C. S., Sutaryo, S., Ward, A. J., & Moller, H. B. (2013). Effects of high-temperature isochoric pre-treatment on the methane yields of cattle, pig and chicken manure. Environmental Technology, 34, 239–244.  https://doi.org/10.1080/09593330.2012.689482.CrossRefGoogle Scholar
  21. 21.
    Jin, Y., Hu, Z., & Wen, Z. (2009). Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. Water Research, 43(14), 3493–3502.  https://doi.org/10.1016/j.watres.2009.05.017.CrossRefGoogle Scholar
  22. 22.
    Biswas, R., Uellendahl, H., & Ahring, B. K. (2015). Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. Bioenergy Research, 8, 1101–1116.  https://doi.org/10.1007/s12155-015-9590-5.CrossRefGoogle Scholar
  23. 23.
    Assefa, A., Egigu, M. C., & Kebede, A. (2014). Thermal and chemical pre-treatments of cow dung and poultry litter enhance biogas production in batch fermentation. International Journal of Scientific & Technology Research, 3, 165–170.Google Scholar
  24. 24.
    Nielsen, H. B., Mladenovska, Z., Westermann, P., & Ahring, B. K. (2004). Comparison of two-stage thermophilic (68°C/55°C) anaerobic digestion with one-stage thermophilic (55°C) digestion of cattle manure. Biotechnology and Bioengineering, 86, 291–300.  https://doi.org/10.1002/bit.20037.CrossRefGoogle Scholar
  25. 25.
    Demirer, G. N., & Chen, S. (2005). Two-phase anaerobic digestion of unscreened dairy manure. Process Biochemistry, 40(2005), 3542–3549.  https://doi.org/10.1016/j.procbio.2005.03.062.CrossRefGoogle Scholar
  26. 26.
    Parawira, W. (2012). Enzyme research and applications in biotechnological intensification of biogas production. Critical Reviews in Biotechnology, 32, 172–186.  https://doi.org/10.3109/07388551.2011.595384.CrossRefGoogle Scholar
  27. 27.
    Show, K. Y., Mao, T., & Lee, D. J. (2007). Optimisation of sludge disruption by sonication. Water Research, 41, 4741–4747.  https://doi.org/10.1016/j.watres.2007.07.017.CrossRefGoogle Scholar
  28. 28.
    Petkovšek, M., Mlakar, M., Levstek, M., Stražar, M., Širok, B., & Dular, M. (2015). A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration. Ultrasonics Sonochemistry, 26, 408–414.  https://doi.org/10.1016/j.ultsonch.2015.01.006.CrossRefGoogle Scholar
  29. 29.
    Langone, M., Ferrentino, R., Trombino, G., Waubert De Puiseau, D., Andreottola, G., Rada, E. C., & Ragazzi, M. (2015). Application of a novel hydrodynamic cavitation system in wastewater treatment plants. UPB Scientific Bulletin, Series D: Mechanical Engineering, 77(1), 225–234.Google Scholar
  30. 30.
    Nagula, K. N., & Pandit, A. B. (2015). Process intensification of delignification and enzymatic hydrolysis of delignified cellulosic biomass using various process intensification techniques including cavitation. Bioresource Technology, 213, 162–168.  https://doi.org/10.1016/j.biortech.2016.03.152.CrossRefGoogle Scholar
  31. 31.
    Iskalieva, A., Mbouyem, B., Gogate, P. R., Horvath, M., Horvath, P. G., & Csoka, L. (2012). Ultrasonics Sonochemistry Cavitation assisted delignification of wheat straw : A review. Ultrasonics - Sonochemistry, 19(5), 984–993.  https://doi.org/10.1016/j.ultsonch.2012.02.007.CrossRefGoogle Scholar
  32. 32.
    Brennen, C. E. (1995). Cavitation and bubbles dynamics.Google Scholar
  33. 33.
    Wu-Haan, W., Burns, R. T., Moody, L. B., Grewell, D., & Raman, R. D. (2010). Evaluation of ultrasonic pretreatment on anaerobic digestion of different animal manures. Transactions of the ASABE, 53(2), 557–583.CrossRefGoogle Scholar
  34. 34.
    Quiroga, G., Castrillón, L., Fernández-Nava, Y., Marañón, E., Negral, L., Rodríguez-Iglesias, J., & Ormaechea, P. (2014). Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresource Technology, 154(2014), 74–79.  https://doi.org/10.1016/j.biortech.2013.11.096.CrossRefGoogle Scholar
  35. 35.
    Castrillón, L., Fernández-Nava, Y., Ormaechea, P., & Marañón, E. (2011). Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresource Technology, 102(2011), 7845–7849.  https://doi.org/10.1016/j.biortech.2011.05.047.CrossRefGoogle Scholar
  36. 36.
    Gogate, P. R., & Bhosale, G. S. (2013). Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chemical Engineering and Processing: Process Intensification, 71, 59–69.  https://doi.org/10.1016/j.cep.2013.03.001.CrossRefGoogle Scholar
  37. 37.
    Gogate, P. R., & Pandit, A. B. (2001). Hydrodynamic cavitation reactors: a state of the art review. Reviews in Chemical Engineering, 17, 1–85.  https://doi.org/10.1515/REVCE.2001.17.1.1.CrossRefGoogle Scholar
  38. 38.
    Gogate, P. R., & Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AICHE Journal, 46(8), 1641–1649.CrossRefGoogle Scholar
  39. 39.
    Mancuso, G., Langone, M., Laezza, M., & Andreottola, G. (2016). Decolourization of Rhodamine B: a swirling jet-induced cavitation combined with NaOCl. Ultrasonics Sonochemistry, 32(2016), 18–30.  https://doi.org/10.1016/j.ultsonch.2016.01.040.CrossRefGoogle Scholar
  40. 40.
    Dular, M., Griessler-Bulc, T., Gutierrez-Aguirre, I., Heath, E., Kosjek, T., Krivograd Klemenčič, A., … Kompare, B. (2016). Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry, 29, 577–588.  https://doi.org/10.1016/j.ultsonch.2015.10.010.
  41. 41.
    Stoop, A. H., Bakker, T. W., & Kramer, H. J. M. (2015). Cavitation for improved sludge conversion into biogas. Journal of Physics: Conference Series, 656, 12118.  https://doi.org/10.1088/1742-6596/656/1/012118.Google Scholar
  42. 42.
    Grübel, K., Machnicka, A., & Suschka, J. (2010). The effect of disintegration of sewage sludge by hydrodynamic cavitation on organic and inorganic matter relase. In Environmental Engineering III (Chapter 10) (pp. 279–284).Google Scholar
  43. 43.
    Habashi, N., Mehrdadi, N., Mennerich, A., Alighardashi, A., & Torabian, A. (2016). Hydrodynamic cavitation as a novel approach for pretreatment of oily wastewater for anaerobic co-digestion with waste activated sludge. Ultrasonics Sonochemistry, 31, 362–370.  https://doi.org/10.1016/j.ultsonch.2016.01.022.CrossRefGoogle Scholar
  44. 44.
    Machnicka, A., Grubel, K., & Suschka, J. (2009). The use of hydrodynamic disintegration as a means to improve anaerobic digestion of activated sludge. Water SA, 35(1), 129–132.Google Scholar
  45. 45.
    Patil, P. N., Gogate, P. R., Csoka, L., Dregelyi-kiss, A., & Horvath, M. (2016). Ultrasonics Sonochemistry Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrasonics - Sonochemistry, 30, 79–86.  https://doi.org/10.1016/j.ultsonch.2015.11.009.CrossRefGoogle Scholar
  46. 46.
    Montusiewicz, A., Pasieczna-Patkowska, S., Lebiocka, M., Szaja, A., & Szymańaska-Chargot, M. (2017). Hydrodynamic cavitation of brewery spent grain diluted by wastewater. Chemical Engineering Journal, 313(2016), 946–956.  https://doi.org/10.1016/j.cej.2016.10.132.CrossRefGoogle Scholar
  47. 47.
    Hilares, R. T., dos Santos, J. C., Ahmed, M. A., Jeon, S. H., da Silva, S. S., & Han, J. I. (2016). Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries. Bioresource Technology, 214, 609–614.  https://doi.org/10.1016/j.biortech.2016.05.004.CrossRefGoogle Scholar
  48. 48.
    Mancuso, G., Langone, M., & Andreottola, G. (2016). A swirling jet-induced cavitation to increase activated sludge solubilisation and aerobic sludge biodegradability. submitted Ultrasonics Sonochemistry.Google Scholar
  49. 49.
    APHA-AWWA-WPCF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.Google Scholar
  50. 50.
    Van Soest, P., Robertson, J., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.CrossRefGoogle Scholar
  51. 51.
    Salsabil, M. R., Prorot, A., Casellas, M., & Dagot, C. (2009). Pre-treatment of activated sludge: effect of sonication on aerobic and anaerobic digestibility. Chemical Engineering Journal, 148(2–3), 327–335.  https://doi.org/10.1016/j.cej.2008.09.003.CrossRefGoogle Scholar
  52. 52.
    Naegele, H. J., Mönch-Tegeder, M., Haag, N. L., & Oechsner, H. (2014). Effect of substrate pretreatment on particle size distribution in a full-scale research biogas plant. Bioresource Technology, 172, 396–402.  https://doi.org/10.1016/j.biortech.2014.09.037.CrossRefGoogle Scholar
  53. 53.
    Brookfield. (2014). More solution to sticky problems. Brookfield Engineering Labs Inc., 59.Google Scholar
  54. 54.
    ISO-11734. (1995). Water quality—evaluation of the ultimate anaerobic biodegradability of organic compounds in digested sludge—method by measurement of the biogas production.Google Scholar
  55. 55.
    Zeeman, G. (1991). Mesophilic and psychrophilic digestion of liquid manure.Google Scholar
  56. 56.
    Schatzmann, M., Fischer, P., & Bezzola, G. R. (2003). Rheological behavior of fine and large particle suspensions. Journal of Hydraulic Engineering ASCE, 129, 796–803.  https://doi.org/10.1061/(ASCE)0733-9429(2003)129:10(796).CrossRefGoogle Scholar
  57. 57.
    Rodriguez Andara, A., & Lomas Esteban, J. M. (2002). Transition of particle size fractions in anaerobic digestion of the solid fraction of piggery manure. Biomass and Bioenergy, 23, 229–235.  https://doi.org/10.1016/S0961-9534(02)00043-0.CrossRefGoogle Scholar
  58. 58.
    Bougrier, C., Albasi, C., Delgenès, J. P., & Carrère, H. (2006). Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chemical Engineering and Processing: Process Intensification, 45(8), 711–718.  https://doi.org/10.1016/j.cep.2006.02.005.CrossRefGoogle Scholar
  59. 59.
    Huan, L., Yiying, J., Mahar, R. B., Zhiyu, W., & Yongfeng, N. (2009). Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. Journal of Hazardous Materials, 161, 1421–1426.  https://doi.org/10.1016/j.jhazmat.2008.04.113.CrossRefGoogle Scholar
  60. 60.
    Braeutigam, P., Franke, M., & Ondruschka, B. (2014). Effect of ultrasound amplitude and reaction time on the anaerobic fermentation of chicken manure for biogas production. Biomass and Bioenergy, 63, 109–113.  https://doi.org/10.1016/j.biombioe.2014.02.007.CrossRefGoogle Scholar
  61. 61.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.  https://doi.org/10.1016/j.biortech.2008.05.027.CrossRefGoogle Scholar
  62. 62.
    Stuckey, D. C., & McCarty, P. L. (1984). The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Research, 18(11), 1343–1353.CrossRefGoogle Scholar
  63. 63.
    Galbe, M., & Zacchi, G. (2012). Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, 46, 70–78.  https://doi.org/10.1016/j.biombioe.2012.03.026.CrossRefGoogle Scholar
  64. 64.
    Dwyer, J., Starrenburg, D., Tait, S., Barr, K., Batstone, D. J., & Lant, P. (2008). Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Research, 42(18), 4699–4709.  https://doi.org/10.1016/j.watres.2008.08.019.CrossRefGoogle Scholar
  65. 65.
    Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.CrossRefGoogle Scholar
  66. 66.
    Higgins, M. J., Adams, G., Chen, Y.-C., Erdal, Z., Forbes, R. H., Glindemann, D., … Witherspoon, J. (2008). Role of protein, amino acids, and enzyme activity on odor production from anaerobically digested and dewatered biosolids. Water environment research : a research publication of the Water Environment Federation, 80, 127–135.  https://doi.org/10.2175/106143007x220716.
  67. 67.
    Limoli, A., Langone, M., & Andreottola, G. (2016). Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process. Journal of Environmental Management, 176, 1–10.  https://doi.org/10.1016/j.jenvman.2016.03.007.CrossRefGoogle Scholar
  68. 68.
    Wiesmann, U. (1994). Biological nitrogen removal from wastewater. Advances in Biochemical Engineering and Biotechnology, 51, 113–154.Google Scholar
  69. 69.
    Gray, D. M. (2005). pH and CO2 determinations based on power plant conductivity measurements. Power Plant Chemistry, 7(4), 214–218.Google Scholar
  70. 70.
    Carlsson, M., Lagerkvist, A., & Morgan-Sagastume, F. (2012). The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Management, 32(9), 1634–1650.  https://doi.org/10.1016/j.wasman.2012.04.016.CrossRefGoogle Scholar
  71. 71.
    Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53.  https://doi.org/10.1016/j.pecs.2014.01.001.CrossRefGoogle Scholar
  72. 72.
    Kianmehr, P., Parker, W., & Seto, P. (2010). An evaluation of protocols for characterization of ozone impacts on WAS properties and digestibility. Bioresource Technology, 101(22), 8565–8572.  https://doi.org/10.1016/j.biortech.2010.06.061.CrossRefGoogle Scholar
  73. 73.
    Menardo, S., Airoldi, G., & Balsari, P. (2012). The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresource Technology, 104, 708–714.  https://doi.org/10.1016/j.biortech.2011.10.061.CrossRefGoogle Scholar
  74. 74.
    Mshandete, A., Björnsson, L., Kivaisi, A. K., Rubindamayugi, M. S. T., & Mattiasson, B. (2006). Effect of particle size on biogas yield from sisal fibre waste. Renewable Energy, 31, 2385–2392.  https://doi.org/10.1016/j.renene.2005.10.015.CrossRefGoogle Scholar
  75. 75.
    Hartmann, H., Angelidaki, I., & Ahring, B. K. (2000). Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water science and technology : a journal of the International Association on Water Pollution Research, 41, 145–153.Google Scholar
  76. 76.
    Chhabra, R. P., & Richardson, J. F. (2011). Non-Newtonian flow and applied rheology.Google Scholar
  77. 77.
    Brujan, E. A. (2011). Cavitation in non-Newtonian fluids. Google Scholar
  78. 78.
    Hashimoto, A. G., & Chen, Y. (1976). Rheology of livestock waste slurries. Transactions of the ASAE, 19(1), 930–934.CrossRefGoogle Scholar
  79. 79.
    Šarc, A., Stepišnik-Perdih, T., Petkovšek, M., & Dular, M. (2017). The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrasonics Sonochemistry, 34(2016), 51–59.  https://doi.org/10.1016/j.ultsonch.2016.05.020.Google Scholar
  80. 80.
    Kim, H. J., Nguyen, D. X., & Bae, J. H. (2008). The performance of the sludge pretreatment system with venturi tubes. Water Science and Technology, 57, 131–137.  https://doi.org/10.2166/wst.2008.717.CrossRefGoogle Scholar
  81. 81.
    Garuti, M., Langone, M., Fabbri, C., & Piccinini, S. (2017). Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant. Bioresource Technology.  https://doi.org/10.1016/j.biortech.2017.09.100.
  82. 82.
    Tian, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., & Li, X. (2014). Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion. Bioresource Technology, 168, 86–91.  https://doi.org/10.1016/j.biortech.2014.03.023.CrossRefGoogle Scholar
  83. 83.
    Montgomery, L. F. R., & Bochmann, G. (2014). Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy.Google Scholar
  84. 84.
    Schumacher, B., Wedwitschka, H., Hofmann, J., Denysenko, V., Lorenz, H., & Liebetrau, J. (2014). Disintegration in the biogas sector—technologies and effects. Bioresource Technology, 168, 2–6.  https://doi.org/10.1016/j.biortech.2014.02.027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
  2. 2.CRPA - Research Centre on Animal ProductionReggio EmiliaItaly
  3. 3.Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly

Personalised recommendations