Advertisement

Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1073–1093 | Cite as

Enhancement of Protective Effects of Radix Scutellariae on UVB-induced Photo Damage in Human HaCaT Keratinocytes

  • Yu-shuai Wang
  • Jin-Gyeong Cho
  • Eun-Son Hwang
  • Jung-Eun Yang
  • Wei Gao
  • Min-zhe Fang
  • Sheng-dao Zheng
  • Tae-Hoo Yi
Article

Abstract

Radix Scutellariae (RS) has long been used in the treatment of inflammatory and allergic diseases. Its main flavonoids, baicalin (BG) and wogonoside (WG), can be hydrolyzed into their corresponding aglycones, baicalein (B) and wogonin (W). In this study, we developed a safe and effective method of transforming these glycosides using Peclyve PR. The transformation rate of BG and WG reached 98.5 and 98.1%, respectively, with 10% enzyme at 40 °C for 60 h. Furthermore, we compared the anti-photoaging activity of RS before and after enzyme treatment, as well as their respective main components, in UVB-irradiated HaCaT cells. Results found that enzyme-treated RS (ERS) appeared to be much better at preventing UVB-induced photoaging than RS. ERS significantly inhibited the upregulation of matrix metalloproteinase-1 and IL-6 caused by UVB radiation by inactivating the MAPK/AP-1 and NF-κB/IκB-α signaling pathways. ERS treatment also recovered UVB-induced reduction of procollagen type I by activating the TGF-β/Smad pathway. In addition, ERS exhibited an excellent antioxidant activity, which could increase the expression of cytoprotective antioxidants such as HO-1 and NQ-O1, by facilitating Nrf2 nuclear transfer. These findings demonstrated that the photoprotective effects of RS were significantly improved by enzyme-modified biotransformation.

Keywords

Radix Scutellariae Baicalin Wogonoside Peclyve PR Biotransformation Baicalein Wogonin Anti-skin photoaging 

Notes

Acknowledgement

This work was supported by the TAEYI Life Science Co. Ltd., Republic of Korea.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Tobin, D. J. (2017). Introduction to skin aging. Journal of Tissue Viability, 26, 37–46.CrossRefGoogle Scholar
  2. 2.
    Cha, J. W., Piao, M. J., Kim, K. C., Zheng, J., Yao, C. W., Hyun, C. L., Kang, H. K., Yoo, E. S., & Koh, Y. S. (2014). Protective effect of 3, 4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes. Applied Biochemistry and Biotechnology, 172, 2582–2592.CrossRefGoogle Scholar
  3. 3.
    Gonzaga, E. R. (2009). Role of UV light in photodamage, skin aging, and skin cancer. American Journal of Clinical Dermatology, 10, 19–24.CrossRefGoogle Scholar
  4. 4.
    Poljšak, B. and Dahmane, R. (2012). Free radicals and extrinsic skin aging. Dermatology Research Practice, 2012.Google Scholar
  5. 5.
    Tanaka, H., Okada, T., Konishi, H., & Tsuji, T. (1993). The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts. Archives of Dermatological Research, 285, 352–355.CrossRefGoogle Scholar
  6. 6.
    Quan, T., Qin, Z., Xia, W., Shao, Y., Voorhees, J. J., & Fisher, G. J. (2009). Matrix-degrading metalloproteinases in photoaging. The Journal of Investigative Dermatology, 14, 20–24.CrossRefGoogle Scholar
  7. 7.
    Fisher, G. J., Datta, S. C., Talwar, H. S., Wang, Z. Q., Varani, J., Kang, S., & Voorhees, J. J. (1996). Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature, 379, 336–339.CrossRefGoogle Scholar
  8. 8.
    Liu, X., Wu, H., Byrne, M., Jeffrey, J., Krane, S., & Jaenisch, R. (1995). A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. The Journal of Cell Biology, 130, 227–237.CrossRefGoogle Scholar
  9. 9.
    Lee, C. W., Na, Y., Park, N. H., Kim, H. S., Ahn, S. M., Kim, J. W., Kim, H. K., & Jang, Y. P. (2012). Amentoflavone inhibits UVB-induced matrix metalloproteinase-1 expression through the modulation of AP-1 components in normal human fibroblasts. Applied Biochemistry and Biotechnology, 166, 1137–1147.CrossRefGoogle Scholar
  10. 10.
    Son, Y., Kim, S., Chung, H. T., & Pae, H. O. (2013). Reactive oxygen species in the activation of MAP kinases. Methods in Enzymology, 528, 27–48.CrossRefGoogle Scholar
  11. 11.
    Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. The Journal of Biological Chemistry, 270, 16483–16486.CrossRefGoogle Scholar
  12. 12.
    Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H., & Shaw, P. E. (1995). ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO, J, 14, 951–962.Google Scholar
  13. 13.
    Cavigelli, M., Dolfi, F., Claret, F. X., & Karin, M. (1995). Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO, J, 14, 5957–5964.Google Scholar
  14. 14.
    Gille, H., Strahl, T., & Shaw, P. E. (1995). Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Current Biology, 5, 1191–1200.CrossRefGoogle Scholar
  15. 15.
    Van Dam, H., Wilhelm, D., Herr, I., Steffen, A., Herrlich, P., & Angel, P. (1995). ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. The EMBO Journal, 14, 1798–1811.Google Scholar
  16. 16.
    Raingeaud, J., Whitmarsh, A. J., Barrett, T., Derijard, B., & Davis, R. J. (1996). MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Molecular and Cellular Biology, 16, 1247–1255.CrossRefGoogle Scholar
  17. 17.
    Gupta, S., Campbell, D., Derijard, B., & Davis, R. J. (1995). Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 267, 389–393.CrossRefGoogle Scholar
  18. 18.
    Dérijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M., & Davis, R. J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 76, 1025–1037.CrossRefGoogle Scholar
  19. 19.
    Han, K. H., Choi, H. R., Won, C. H., Chung, J. H., Cho, K. H., Eun, H. C., & Kim, K. H. (2005). Alteration of the TGF-β/SMAD pathway in intrinsically and UV-induced skin aging. Mechanisms of Ageing and Development, 126, 560–567.CrossRefGoogle Scholar
  20. 20.
    Quan, T., He, T., Kang, S., Voorhees, J. J., & Fisher, G. J. (2004). Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling. The American Journal of Pathology, 165, 741–751.CrossRefGoogle Scholar
  21. 21.
    Quan, T., He, T., Voorhees, J. J., & Fisher, G. J. (2001). Ultraviolet irradiation blocks cellular responses to transforming growth factor-β by down-regulating its type-II receptor and inducing Smad7. The Journal of Biological Chemistry, 276, 26349–26356.CrossRefGoogle Scholar
  22. 22.
    Ma, Q. (2013). Role of Nrf2 in oxidative stress and toxicity. Annu Review Pharmacology, 53, 401–426.CrossRefGoogle Scholar
  23. 23.
    Kim, M. R., Lee, H. S., Choi, H. S., Kim, S. Y., Park, Y., & Suh, H. J. (2014). Protective effects of ginseng leaf extract using enzymatic extraction against oxidative damage of UVA-irradiated human keratinocytes. Applied Biochemistry and Biotechnology, 173, 933–945.CrossRefGoogle Scholar
  24. 24.
    Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry, 284, 13291–13295.CrossRefGoogle Scholar
  25. 25.
    Hirota, A., Kawachi, Y., Yamamoto, M., Koga, T., Hamada, K., & Otsuka, F. (2011). Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice. Experimental Dermatology, 20, 664–668.CrossRefGoogle Scholar
  26. 26.
    Wu, S., Tan, M., Hu, Y., Wang, J. L., Scheuner, D., & Kaufman, R. J. (2004). Ultraviolet light activates NFκB through translational inhibition of IκBα synthesis. The Journal of Biological Chemistry, 279, 34898–34902.CrossRefGoogle Scholar
  27. 27.
    Matsusaka, T., Fujikawa, K., Nishio, Y., Mukaida, N., Matsushima, K., Kishimoto, T., & Akira, S. (1993). Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proceedings of the National Academy of Sciences, 90, 10193–10197.CrossRefGoogle Scholar
  28. 28.
    Tang, S. C., Liao, P. Y., Hung, S. J., Ge, J. S., Chen, S. M., Lai, J. C., Hsiao, Y. P., & Yang, J. H. (2017). Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin. Journal of Dermatological Science, 86, 238–248.CrossRefGoogle Scholar
  29. 29.
    Imokawa, G., & Ishida, K. (2015). Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. International Journal of Molecular Sciences, 16, 7753–7775.CrossRefGoogle Scholar
  30. 30.
    Sundararaj, K. P., Samuvel, D. J., Li, Y., Sanders, J. J., Lopes-Virella, M. F., & Huang, Y. (2009). Interleukin-6 released from fibroblasts is essential for up-regulation of matrix metalloproteinase-1 expression by U937 macrophages in coculture cross-talking between fibroblasts and U937 macrophages exposed to high glucose. The Journal of Biological Chemistry, 284, 13714–13724.CrossRefGoogle Scholar
  31. 31.
    Gao, Z., Huang, K., Yang, X., & Xu, H. (1999). Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochimica et Biophysica Acta-General Subjects, 1472, 643–650.CrossRefGoogle Scholar
  32. 32.
    Chi, Y. S., Lim, H., Park, H., & Kim, H. P. (2003). Effects of wogonin, a plant flavone from Scutellaria radix, on skin inflammation: in vivo regulation of inflammation-associated gene expression. Biochemical Pharmacology, 66, 1271–1278.CrossRefGoogle Scholar
  33. 33.
    Lu, Y., Joerger, R., & Wu, C. (2011). Study of the chemical composition and antimicrobial activities of ethanolic extracts from roots of Scutellaria baicalensis Georgi. Journal of Agricultural and Food Chemistry, 59, 10934–10942.CrossRefGoogle Scholar
  34. 34.
    Wei, L., Lin, J., Xu, W., Cai, Q., Shen, A., Hong, Z., & Peng, J. (2012). Scutellaria barbata D. Don inhibits tumor angiogenesis via suppression of hedgehog pathway in a mouse model of colorectal cancer. International Journal Molecular Sciences, 13, 9419–9430.CrossRefGoogle Scholar
  35. 35.
    Dong, L. L., Fu, Y. J., Zu, Y. G., Luo, M., Wang, W., Li, X. J., & Li, J. (2012). Application of cavitation system to accelerate the endogenous enzymatic hydrolysis of baicalin and wogonoside in Radix Scutellariae. Food Chemistry, 131, 1422–1429.CrossRefGoogle Scholar
  36. 36.
    Dong, L. L., Fu, Y. J., Zu, Y. G., Luo, M., Wang, W., Li, C. Y., & Mu, P. S. (2012). An enhanced preparation and purification of the major antioxidants baicalein and wogonin from Scutellariae radix. Food Chemistry, 133, 430–436.CrossRefGoogle Scholar
  37. 37.
    Ku, S., Zheng, H., Park, M. S., & Ji, G. E. (2011). Optimization of β-glucuronidase activity from Lactobacillus delbrueckii Rh2 and and its use for biotransformation of baicalin and wogonoside. Journal of the Korean Society for Applied Biological, 54, 275–280.Google Scholar
  38. 38.
    Kang, K. A., Zhang, R., Piao, M. J., Chae, S., Kim, H. S., Park, J. H., Jung, K. S., & Hyun, J. W. (2012). Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicology and Industrial Health, 28, 412–421.CrossRefGoogle Scholar
  39. 39.
    Kim, K. C., Kang, S. S., Lee, J., Park, D., & Hyun, J. W. (2012). Baicalein attenuates oxidative stress-induced expression of matrix metalloproteinase-1 by regulating the ERK/JNK/AP-1 pathway in human keratinocytes. Biomolecules & Therapeutics, 20, 57–61.CrossRefGoogle Scholar
  40. 40.
    Yang, Y. Z., Tang, Y. Z., & Liu, Y. H. (2013). Wogonoside displays anti-inflammatory effects through modulating inflammatory mediator expression using RAW264.7 cells. Journal of Ethnopharmacology, 148, 271–276.CrossRefGoogle Scholar
  41. 41.
    Chi, Y. S., & Kim, H. P. (2005). Suppression of cyclooxygenase-2 expression of skin fibroblasts by wogonin, a plant flavone from Scutellaria radix. Prostag Leukotr Ess, 72, 59–66.CrossRefGoogle Scholar
  42. 42.
    Kimura, Y., & Sumiyoshi, M. (2011). Effects of baicalein and wogonin isolated from Scutellaria baicalensis roots on skin damage in acute UVB-irradiated hairless mice. European Journal of Pharmacology, 661, 124–132.CrossRefGoogle Scholar
  43. 43.
    Xing, J., Chen, X., & Zhong, D. (2005). Absorption and enterohepatic circulation of baicalin in rats. Life Sciences, 78, 140–146.CrossRefGoogle Scholar
  44. 44.
    Lai, M. Y., Hsiu, S. L., Tsai, S. Y., Hou, Y. C., & Chao, P. D. L. (2003). Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. The Journal of Pharmacy and Pharmacology, 55, 205–209.CrossRefGoogle Scholar
  45. 45.
    Jiang, Z., Zhang, Y., Li, J., Jiang, W., Yang, D., & Wu, H. (2007). Encapsulation of β-glucuronidase in biomimetic alginate capsules for bioconversion of baicalin to baicalein. Industrial and Engineering Chemistry Research, 46, 1883–1890.CrossRefGoogle Scholar
  46. 46.
    Islam, M. N., Chung, H. J., Kim, D. H., & Yoo, H. H. (2012). A simple isocratic HPLC method for the simultaneous determination of bioactive components of Scutellariae radix extract. Natural Product Research, 26, 1957–1962.CrossRefGoogle Scholar
  47. 47.
    Lu, Y., & Jiang, J. G. (2013). Application of enzymatic method in the extraction and transformation of natural botanical active ingredients. Applied Biochemistry and Biotechnology, 169, 923–940.CrossRefGoogle Scholar
  48. 48.
    Zuorro, A., Fidaleo, M., & Lavecchia, R. (2011). Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme and Microbial Technology, 49, 567–573.CrossRefGoogle Scholar
  49. 49.
    Hwang, E., Park, S. Y., Sun, Z. W., Shin, H. S., Lee, D. G., & Yi, T. H. (2014). The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts. Marine Biotechnology, 16, 361–370.CrossRefGoogle Scholar
  50. 50.
    Schiller, M., Javelaud, D., & Mauviel, A. (2004). TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of Dermatological Science, 35, 83–92.CrossRefGoogle Scholar
  51. 51.
    Swalwell, H., Latimer, J., Haywood, R. M., & Birch-Machin, M. A. (2012). Investigating the role of melanin in UVA/UVB-and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells. Free Radical Biology and Medicine, 52, 626–634.CrossRefGoogle Scholar
  52. 52.
    Zhou, Y., Yang, Z. Y., & Tang, R. C. (2016). Bioactive and UV protective silk materials containing baicalin—The multifunctional plant extract from Scutellaria baicalensis Georgi. Material Science and Engineering C, 67, 336–344.CrossRefGoogle Scholar
  53. 53.
    Kim, T. W., Song, I. B., Lee, H. K., Kim, M. S., Ham, S. H., Cho, J. H., Lim, J. H., & Yun, H. I. (2013). Assessment of dermal safety of Scutellaria baicalensis aqueous extract topical application on skin hypersensitivity. Planta Medica, 79, 959–962.CrossRefGoogle Scholar
  54. 54.
    Choi, W., Kwon, H. S., & Lee, H. Y. (2014). Enhancement of anti-skin inflammatory activities of Scutellaria baicalensis using an alkaline reduced water extraction process. Food Science and Biotechnology, 23, 1859–1866.CrossRefGoogle Scholar
  55. 55.
    Seok, J. K., Kwak, J. Y., Choi, G. W., An, S. M., Kwak, J. H., Seo, H. H., Suh, H. J., & Boo, Y. C. (2015). Scutellaria radix extract as a natural UV protectant for human skin. Phytotherapy Research, 30, 374–379.CrossRefGoogle Scholar
  56. 56.
    Hong, Y. H., Jung, E. Y., Shin, K. S., Kim, T. Y., Yu, K. W., Chang, U. J., & Suh, H. J. (2012). Photoprotective effects of a formulation containing tannase-converted green tea extract against UVB-induced oxidative stress in hairless mice. Applied Biochemistry and Biotechnology, 166, 165–175.CrossRefGoogle Scholar
  57. 57.
    Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75, 50–83.CrossRefGoogle Scholar
  58. 58.
    Karin, M., & Hunter, T. (1995). Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Current Biology, 5, 747–757.CrossRefGoogle Scholar
  59. 59.
    Karin, M., Liu, Z. G., & Zandi, E. (1997). AP-1 function and regulation. Current Opinion in Cell Biology, 9, 240–246.CrossRefGoogle Scholar
  60. 60.
    Angel, P., Szabowski, A., & Schorpp-Kistner, M. (2001). Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene, 20, 2413–2423.CrossRefGoogle Scholar
  61. 61.
    Chen, S. J., Yuan, W., Mori, Y., Levenson, A., Varga, J., & Trojanowska, M. (1999). Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. The Journal of Investigative Dermatology, 112, 49–57.CrossRefGoogle Scholar
  62. 62.
    Baldwin Jr., A. S. (1996). The NF-кB and IкB proteins: new discoveries and insights. Annual Review of Immunology, 14, 649–681.CrossRefGoogle Scholar
  63. 63.
    Giuliani, C., Napolitano, G., Bucci, I., Montani, V., & Monaco, F. (2000). Nf-кB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications. La Clinica Terapeutica, 152, 249–253.Google Scholar
  64. 64.
    Pillai, S., Oresajo, C., & Hayward, J. (2005). Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—a review. International Journal of Cosmetic Science, 27, 17–34.CrossRefGoogle Scholar
  65. 65.
    Shieh, D. E., Liu, L. T., & Lin, C. C. (2000). Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Research, 20, 2861–2865.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yu-shuai Wang
    • 1
  • Jin-Gyeong Cho
    • 1
  • Eun-Son Hwang
    • 1
  • Jung-Eun Yang
    • 1
  • Wei Gao
    • 1
  • Min-zhe Fang
    • 1
  • Sheng-dao Zheng
    • 1
  • Tae-Hoo Yi
    • 1
  1. 1.Department of Oriental Medicinal Material and Processing, College of Life ScienceKyung Hee University Global CampusYongin-siRepublic of Korea

Personalised recommendations