Variations in Physicochemical Properties and Bioconversion Efficiency of Ulva lactuca Polysaccharides After Different Biomass Pretreatment Techniques

  • Mohamed Amine Jmel
  • Nico Anders
  • Nesrine Ben Yahmed
  • Christian Schmitz
  • M. Nejib Marzouki
  • Antje Spiess
  • Issam Smaali
Article
  • 117 Downloads

Abstract

Green macroalgae are an abundant and undervalued biomass with a specific cell wall structure. In this context, different pretreatments, namely ethanol organosolv (Org), alkaline, liquid hot water (LHW), and ionic liquid (IL) pretreatments, were applied to the green macroalgae Ulva lactuca biomass and then evaluated. Their effects on chemical composition, biomass crystallinity, enzymatic digestibility, and theoretical ethanol potential were studied. The chemical composition analysis showed that the Org and LHW pretreatments allowed the highest glucan recovery (80.8 ± 3.6 and 62.9 ± 4.4 g/100 g DM, respectively) with ulvan (80.0 and 99.1%) and hemicellulose (55.0 and 42.3%) removal. These findings were in agreement with both thermogravimetric analysis and scanning electron microscopy results that confirm significant structural changes of the pretreated biomasses. It was found that the employed pretreatments did not significantly affect the cellulose crystallinity; however, they both increased the whole crystallinity and the enzymatic digestibility. This later reached 97.5% in the case of LHW pretreatment. Our results showed high efficiency saccharification of Ulva lactuca biomass that will constitute the key step of the implementation of a biorefinery process.

Keywords

Green macroalgae Pretreatment Crystallinity Enzymatic hydrolysis Ulva lactuca 

Abbreviations

[EMIM][Ac]

1-ethyl-3- methylimidazolium- acetate

CrI

Crystallinity index

DM

Dry matter

HPAEC-PAD

High-performance anion exchange chromatography coupled to pulsed amperometric detection

IL

Ionic liquid

LHW

Liquid hot water

Org

Ethanol organosolv

SEM

Scanning electron microscopy

TGA

Thermogravimetric analysis

Supplementary material

12010_2017_2588_MOESM1_ESM.docx (57 kb)
ESM 1(DOCX 56 kb)

References

  1. 1.
    Suganya, T., Varman, M., Masjuki, H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941.CrossRefGoogle Scholar
  2. 2.
    Borines, M. G., de Leon, R. L., & Cuello, J. L. (2013). Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology, 138, 22–29.CrossRefGoogle Scholar
  3. 3.
    Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: an overview. Bioresource Technology, 101, 4767–4774.CrossRefGoogle Scholar
  4. 4.
    Jmel, M. A., Ben, M. G., Marzouki, M. N., Mathlouthi, M., & Smaali, I. (2016). Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose. Carbohydrate Polymers, 135, 274–279.CrossRefGoogle Scholar
  5. 5.
    Ben, Y. N., Jmel, M. A., Ben, A. M., Bouallagui, H., Marzouki, M. N., & Smaali, I. (2016). A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Conversion and Management, 119, 257–265.CrossRefGoogle Scholar
  6. 6.
    Subhadra, B., & Edwards, M. (2010). An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, 38, 4897–4902.CrossRefGoogle Scholar
  7. 7.
    Jung, K. A., Lim, S.-R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135, 182–190.CrossRefGoogle Scholar
  8. 8.
    Bharathiraja, B., Chakravarthy, M., Kumar, R. R., Yogendran, D., Yuvaraj, D., Jayamuthunagai, J., Kumar, R. P., & Palani, S. (2015). Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renewable and Sustainable Energy Reviews, 47, 634–653.CrossRefGoogle Scholar
  9. 9.
    Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.CrossRefGoogle Scholar
  10. 10.
    Fox, A., Nowycky, M., & Tsien, R. (1987). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. The Journal of Physiology, 394, 149.CrossRefGoogle Scholar
  11. 11.
    Zhao, X., Peng, F., Cheng, K., & Liu, D. (2009). Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali–peracetic acid pretreatment. Enzyme and Microbial Technology, 44, 17–23.CrossRefGoogle Scholar
  12. 12.
    Da Cruz, S. H., Dien, B. S., Nichols, N. N., Saha, B. C., & Cotta, M. A. (2012). Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF. Journal of Industrial Microbiology & Biotechnology, 39, 439–447.CrossRefGoogle Scholar
  13. 13.
    Zavrel, M., Bross, D., Funke, M., Büchs, J., & Spiess, A. C. (2009). High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresource Technology, 100, 2580–2587.CrossRefGoogle Scholar
  14. 14.
    van der Wal, H., Sperber, B. L., Houweling-Tan, B., Bakker, R. R., Brandenburg, W., & López-Contreras, A. M. (2013). Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology, 128, 431–437.CrossRefGoogle Scholar
  15. 15.
    Kim, D.-H., Lee, S.-B., & Jeong, G.-T. (2014). Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresource Technology, 161, 348–353.CrossRefGoogle Scholar
  16. 16.
    Viell, J., Wulfhorst, H., Schmidt, T., Commandeur, U., Fischer, R., Spiess, A., & Marquardt, W. (2013). An efficient process for the saccharification of wood chips by combined ionic liquid pretreatment and enzymatic hydrolysis. Bioresource Technology, 146, 144–151.CrossRefGoogle Scholar
  17. 17.
    Viell, J., Inouye, H., Szekely, N. K., Frielinghaus, H., Marks, C., Wang, Y., Anders, N., Spiess, A. C., & Makowski, L. (2016). Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures. Biotechnology for Biofuels, 9, 7.CrossRefGoogle Scholar
  18. 18.
    Resch M. G., Baker J. O., & Decker S. R. (2015). Low solids enzymatic saccharification of lignocellulosic biomass. Laboratory analytical procedure, Denver, NREL.Google Scholar
  19. 19.
    Van Wychen, S., & Laurens, L. (2013). Determination of total carbohydrates in algal biomass. Laboratory analytical procedure, Denver, NREL.Google Scholar
  20. 20.
    Anders, N., Humann, H., Langhans, B., & Spieß, A. (2015). Simultaneous determination of acid-soluble biomass-derived compounds using high performance anion exchange chromatography coupled with pulsed amperometric detection. Analytical Methods, 7, 7866–7873.CrossRefGoogle Scholar
  21. 21.
    Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8, 1765–1774.CrossRefGoogle Scholar
  22. 22.
    Bobin-Dubigeon, C., Lahaye, M., & Barry, J. L. (1997). Human colonic bacterial degradability of dietary fibres from sea-lettuce (Ulva sp). Journal of the Science of Food and Agriculture, 73, 149–159.CrossRefGoogle Scholar
  23. 23.
    Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, 10, 25–28.CrossRefGoogle Scholar
  24. 24.
    Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A., & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99, 98–104.CrossRefGoogle Scholar
  25. 25.
    Schultz-Jensen, N., Thygesen, A., Leipold, F., Thomsen, S. T., Roslander, C., Lilholt, H., & Bjerre, A. B. (2013). Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol—comparison of five pretreatment technologies. Bioresource Technology, 140, 36–42.CrossRefGoogle Scholar
  26. 26.
    Gupta, R. (2008). Alkaline pretreatment of biomass for ethanol production and understanding the factors influencing the cellulose hydrolysis, ProQuest2008.Google Scholar
  27. 27.
    Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers, 91, 652–664.CrossRefGoogle Scholar
  28. 28.
    Ravanal, M. C., Pezoa-Conte, R., von Schoultz, S., Hemming, J., Salazar, O., Anugwom, I., Jogunola, O., Mäki-Arvela, P., Willför, S., & Mikkola, J.-P. (2016). Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research, 13, 141–147.CrossRefGoogle Scholar
  29. 29.
    Pezoa-Conte, R., Leyton, A., Anugwom, I., von Schoultz, S., Paranko, J., Mäki-Arvela, P., Willför, S., Muszyński, M., Nowicki, J., & Lienqueo, M. (2015). Deconstruction of the green alga Ulva rigida in ionic liquids: closing the mass balance. Algal Research, 12, 262–273.CrossRefGoogle Scholar
  30. 30.
    Wendler, F., Meister, F., Wawro, D., Wesolowska, E., Ciechanska, D., Saake, B., Puls, J., Le Moigne, N., & Navard, P. (2010). Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Fibres and Textiles in Eastern Europe, 18, 21–30.Google Scholar
  31. 31.
    Alves, A., Caridade, S. G., Mano, J. F., Sousa, R. A., & Reis, R. L. (2010). Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 345, 2194–2200.CrossRefGoogle Scholar
  32. 32.
    White, J. E., Catallo, W. J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, 1–33.CrossRefGoogle Scholar
  33. 33.
    Chen, W.-T., Ma, J., Zhang, Y., Gai, C., & Qian, W. (2014). Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics. Bioresource Technology, 169, 816–820.CrossRefGoogle Scholar
  34. 34.
    Liu, H.-M., Li, M.-F., Yang, S., & Sun, R.-C. (2013). Understanding the mechanism of cypress liquefaction in hot-compressed water through characterization of solid residues. Energies, 6, 1590–1603.CrossRefGoogle Scholar
  35. 35.
    Chen, L., Li, J., Lu, M., Guo, X., Zhang, H., & Han, L. (2016). Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover. Carbohydrate Polymers, 141, 1–9.CrossRefGoogle Scholar
  36. 36.
    Li, M.-C., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015). Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustainable Chemistry & Engineering, 3, 821–832.CrossRefGoogle Scholar
  37. 37.
    Choi, W.-Y., Kang, D.-H., & Lee, H.-Y. (2013). Enhancement of the saccharification yields of Ulva pertusa kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnology and Bioprocess Engineering, 18, 728–735.CrossRefGoogle Scholar
  38. 38.
    Wan, C., Zhou, Y., & Li, Y. (2011). Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology, 102, 6254–6259.CrossRefGoogle Scholar
  39. 39.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  40. 40.
    Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.CrossRefGoogle Scholar
  41. 41.
    Salapa, I., Katsimpouras, C., Topakas, E., & Sidiras, D. (2017). Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16.CrossRefGoogle Scholar
  42. 42.
    Romero, A., Alonso, E., Sastre, A., & Nieto-Marquez, A. (2016). Conversion of biomass into sorbitol: cellulose hydrolysis on MCM-48 and d-Glucose hydrogenation on Ru/MCM-48. Microporous and Mesoporous Materials, 224, 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mohamed Amine Jmel
    • 1
  • Nico Anders
    • 2
  • Nesrine Ben Yahmed
    • 1
  • Christian Schmitz
    • 2
  • M. Nejib Marzouki
    • 1
  • Antje Spiess
    • 2
    • 3
    • 4
  • Issam Smaali
    • 1
  1. 1.LIP-MB Laboratory LR11ES24Université de CarthageTunisTunisia
  2. 2.AVT-Enzyme Process TechnologyRWTH Aachen UniversityAachenGermany
  3. 3.DWI – Leibniz Institute for Interactive MaterialsAachenGermany
  4. 4.ibvt, Institut für BioverfahrenstechnikBraunschweigGermany

Personalised recommendations