Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation

Abstract

Bioethanol was produced using polysaccharide from soybean residue as biomass by separate hydrolysis and fermentation (SHF). This study focused on pretreatment, enzyme saccharification, and fermentation. Pretreatment to obtain monosaccharide was carried out with 20% (w/v) soybean residue slurry and 270 mmol/L H2SO4 at 121 °C for 60 min. More monosaccharide was obtained from enzymatic hydrolysis with a 16 U/mL mixture of commercial enzymes C-Tec 2 and Viscozyme L at 45 °C for 48 h. Ethanol fermentation with 20% (w/v) soybean residue hydrolysate was performed using wild-type and Saccharomyces cerevisiae KCCM 1129 adapted to high concentrations of galactose, using a flask and 5-L fermenter. When the wild type of S. cerevisiae was used, an ethanol production of 20.8 g/L with an ethanol yield of 0.31 g/g consumed glucose was obtained. Ethanol productions of 33.9 and 31.6 g/L with ethanol yield of 0.49 g/g consumed glucose and 0.47 g/g consumed glucose were obtained in a flask and a 5-L fermenter, respectively, using S. cerevisiae adapted to a high concentration of galactose. Therefore, adapted S. cerevisiae to galactose could enhance the overall ethanol fermentation yields compared to the wild-type one.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Martinelli, L. A., & Filoso, S. (2008). Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecological Applications, 18, 885–898.

    Article  Google Scholar 

  2. 2.

    Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., & Kondo, A. (2004). Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha amylase. Applied and Environmental Microbiology, 70, 5037–5040.

    CAS  Article  Google Scholar 

  3. 3.

    Nguyen, Q. A., Yang, J., & Bae, H. J. (2017). Bioethanol production from individual and mixed agricultural biomass residues. Industrial Crops and Products, 95, 718–725.

    CAS  Article  Google Scholar 

  4. 4.

    Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotechnology, 5, 337–353.

    Google Scholar 

  5. 5.

    Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., & Soccol, C. R. (2012). Ethanol production from soybean molasses by Zymomonas mobilis. Biomass and Bioenergy, 44, 80–86.

    CAS  Article  Google Scholar 

  6. 6.

    Schirmer-Michel, A. C., Flôres, S. H., Hertz, P. F., Matos, G. S., & Ayub, M. A. Z. (2008). Production of ethanol from soybean hull hydrolysate. Bioresource Technology, 99, 2898–2904.

    CAS  Article  Google Scholar 

  7. 7.

    Khare, S. K., Jha, K., & Gandhi, A. P. (1995). Citric acid production from Okara (soy-residue) by solid-state fermentation. Bioresource Technology, 54, 323–325.

    CAS  Article  Google Scholar 

  8. 8.

    O’toole, D. K. (1999). Characteristics and use of Okara, the soybean residue from soy milk productions: a review. Journal of Agricultural and Food Chemistry, 47, 363–371.

    Article  Google Scholar 

  9. 9.

    Yoshii, H., Furuta, T., Maeda, H., & Mori, H. (1996). Hydrolysis kinetics of Okara and characterization of its water-soluble polysaccharides. Bioscience Biotechnology Biochemistry, 60, 1406–1409.

    CAS  Article  Google Scholar 

  10. 10.

    Mielenz, J. R. (2011). Ethanol production from biomass: technology and commercialization status. Current Opinion in Microbiology, 4, 324–329.

    Article  Google Scholar 

  11. 11.

    Cotana, F., Cavalaglio, G., Gelosia, M., Coccia, V., Petrozzi, A., Ingles, D., & Pompili, E. (2015). A comparison between SHF and SSF processes from cardoon for ethanol production. Industrial Crops and Products, 69, 424–432.

    CAS  Article  Google Scholar 

  12. 12.

    Marques, S., Alves, L., Roseiro, J. C., & Gírio, F. M. (2008). Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass and Bioenergy, 32, 400–406.

    CAS  Article  Google Scholar 

  13. 13.

    Wirawan, F., Cheng, C. L., Kao, W. C., Lee, D. J., & Chang, J. S. (2012). Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis. Applied Energy, 100, 19–26.

    CAS  Article  Google Scholar 

  14. 14.

    Ra, C. H., Jeong, G. T., Shin, M. K., & Kim, S. K. (2013). Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresource Technology, 140, 421–425.

    CAS  Article  Google Scholar 

  15. 15.

    Park, J. H., Hong, J. Y., Jang, H. C., Oh, S. G., Kim, S. H., Yoon, J. J., & Kim, Y. J. (2012). Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, 83–88.

    CAS  Article  Google Scholar 

  16. 16.

    Siqueira, P. F., Karp, S. G., Carvalho, J. C., Sturm, W., Rodríguez-León, J. A., Tholozan, J. L., Singhania, R. R., Pandey, A., & Soccol, C. R. (2008). Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresource Technology, 99, 8156–8163.

    CAS  Article  Google Scholar 

  17. 17.

    AOAC (Association of Official Analysis Chemists). (1995). Official methods of analysis of the association of official analytical chemists (16th ed.). Arlington: Association of Official Analysis Chemists.

    Google Scholar 

  18. 18.

    Choi, I. S., Kim, Y. G., Jung, J. K., & Bae, H. J. (2015). Soybean waste (okara) as a valorization biomass for the bioethanol production. Energy, 93, 1742–1747.

    CAS  Article  Google Scholar 

  19. 19.

    Redding, A. P., Wang, Z., Keshwani, D. R., & Cheng, J. J. (2011). High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresource Technology, 102, 1415–1424.

    CAS  Article  Google Scholar 

  20. 20.

    Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress, 21, 816–822.

    CAS  Article  Google Scholar 

  21. 21.

    Ra, C. H., Kim, Y. J., Lee, S. Y., Jeong, G. T., & Kim, S. K. (2015). Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa. Bioprocess and Biosystems Engineering, 38, 1715–1722.

    CAS  Article  Google Scholar 

  22. 22.

    van Maris, A. J. A., Abbott, D. A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M. A., Wisselink, H. W., Scheffers, W. A., van Dijken, J. P., & Pronk, J. T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek, 90, 391–418.

    CAS  Article  Google Scholar 

  23. 23.

    Meinita, M. D. N., Kang, J. Y., Jeong, G. T., Koo, H. M., Park, S. M., & Hong, Y. K. (2011). Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). Journal of Applied Phycology, 24, 857–862.

    Article  Google Scholar 

  24. 24.

    Lin, T. H., Guo, G. L., Hwang, W. S., & Huang, S. L. (2016). The addition of hydrolyzed rice straw in xylose fermentation by Pichia stipitis to increase bioethanol production at the pilot-scale. Biomass and Bioenergy, 91, 204–209.

    CAS  Article  Google Scholar 

  25. 25.

    Khambhaty, Y., Mody, K., Gandhi, M. R., Thampy, S., Maiti, P., Prahmbhatt, H., Eswaran, K., & Ghosh, P. K. (2012). Kappaphycus alvarezii as a source of bioethanol. Bioresource Technology, 103, 180–185.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (2016R1D1A1A09918683).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H., Ra, C.H., Sunwoo, I.Y. et al. Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation. Appl Biochem Biotechnol 184, 513–523 (2018). https://doi.org/10.1007/s12010-017-2565-6

Download citation

Keywords

  • Adaptation
  • Enzymatic saccharification
  • Fermentation
  • Soybean residue
  • Thermal acid hydrolysis