Marsh, G. (2009). Small wonders: biomass from algae. Renewable Energy Focus, 9(74–76), 78.
Google Scholar
Li-Beisson, Y., & Peltier, G. (2013). Third-generation biofuels: current and future research on microalgal lipid biotechnology. Oilseeds and Fats, Crops and Lipids, 20, D606.
Google Scholar
Hu, Q., Sommerfeld, M., & Jarvis, E. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54, 621–639.
CAS
Article
Google Scholar
Zhou, W. G., Chen, P., Min, M., Ma, X. C., Wang, J. H., Griffith, R., Hussain, F., Peng, P., Xie, Q. L., Li, Y., Shi, J., Meng, J. Z., & Ruan, R. (2014). Environment-enhancing algal biofuel production using wastewaters. Renewable and Sustainable Energy Reviews, 36, 256–269.
Article
Google Scholar
Daud, M. N., Abdullah, S. S. R., & Yaakob, Z. (2015). Production of biodiesel and its wastewater treatment technologies: a review. Process Safety and Environmental Protection, 94, 487–508.
CAS
Article
Google Scholar
Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels and bioproducts. Biotechnology Advances, 29, 686–702.
CAS
Article
Google Scholar
Komolafe, O., Orta, V. S., Monje-Ramirez, I., Yanez, I., Harvey, A. N., & Ledesma, M. O. (2014). Biodiesel production from indigenous microalgae grown in wastewater. Bioresource Technology, 154, 297–304.
CAS
Article
Google Scholar
Marinho-Soriano, E., Azevedo, C. A. A., Trigueiro, T. G., Pereira, D. C., Carneiro, M. A. A., & Carnara, M. R. (2011). Bioremediation of aquaculture wastewater using macroalgae and Artemia. International Biodeterioration & Biodegradation, 65, 253–257.
CAS
Article
Google Scholar
Hena, S., Fatimah, S., & Tabssum, S. (2015). Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resources and Industry, 10, 1–14.
Article
Google Scholar
Park, K. C., Whitney, C. G., Kozera, C., O’Leary, S. J., & McGinn, P. J. (2015). Seasonal isolation of microalgae from municipal wastewater for remediation and biofuel applications. Journal of Applied Microbiology, 119, 76–87.
CAS
Article
Google Scholar
Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research, 47, 4294–4302.
CAS
Article
Google Scholar
Carlton, J. T. (1999). The scale and ecological consequences of biological invasions in the world’s oceans. In O. T. Sandlund, P. J. Schei, & A. Viken (Eds.), Invasive species and biodiversity management (pp. 195–212). Dordrecht: Kluwer Academic Publishers.
Chapter
Google Scholar
Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35, 171–201.
Hu, H., & Wei, Y. (2006). The freshwater algae of China: Systematics, taxonomy and ecology. Beijing: Science Press.
Google Scholar
Bellinger, E. G., & Sigee, D. C. (2010). Freshwater algae: identification and use as bioindicators. Hoboken: Wiley-Blackwell.
Book
Google Scholar
Richards, E., Reichardt, M., & Rogers, S. (2003). Preparation of genomic DNA from plant tissue. In M. F. Ausubel (Ed.), Current protocols in molecular biology (pp. 231–237). New York: Wiley.
Google Scholar
Blight, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry Physiology, 37, 911–917.
Article
Google Scholar
Liu, J., Huang, J., Fan, K. W., Jiang, Y., Zhong, Y., Sun, Z., & Chen, F. (2010). Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 101, 8658–8663.
CAS
Article
Google Scholar
Sun, Z., Zhou, Z. G., Gerken, H., Chen, F., & Liu, J. (2015). Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production. Bioresource Technology, 184, 53–62.
CAS
Article
Google Scholar
Liu, J., Sommerfeld, M., & Hu, Q. (2013). Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Applied Microbiology Biotechnology, 97, 4785–4798.
CAS
Article
Google Scholar
Sun, Z., Liu, J., & Zhou, Z. (2016). Algae for biofuels: An emerging feedstock. In R. Luque (Ed.), Handbook of biofuels’ production: Processes and technologies (2nd ed., pp. 673–698). Cambridge: Woodhead Publishing, Elsevier.
Google Scholar
Yu, R. Q., Liu, Y., Tian, S. Q., Yang, Y. X., Li, W., Cao, Y., & Qiao, D. R. (2011). Isolation and identification of oil microalgae and optimization of its culture conditions. China Journal of Applied and Environmental Biology, 17, 897–900.
CAS
Google Scholar
Gong, Y., & Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 33, 1269–1284.
CAS
Article
Google Scholar
Qi, Q. (2011). The influences of temperature on two marine microalgae growth and polysaccharide content. Journal of Aquaculture, 32, 20–23.
Google Scholar
Travieso, L., Hall, D. O., Rao, K. K., Beníteza, F., Sáncheza, E., & Borja, R. (2001). A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. International Biodeterioration & Biodegradation., 47, 151–155.
CAS
Article
Google Scholar
Han, F., Pei, H., Hu, W., Han, L., Zhang, S., & Ma, G. (2016). Effect of high-temperature stress on microalgae at the end of the logarithmic phase for the efficient production of lipid. Environmental Technology, 37, 2649–2657.
CAS
Article
Google Scholar
Yang, W., Zou, S., He, M., Fei, C., Luo, W., Zheng, S., Chen, B., & Wang, C. (2016). Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations. Bioresource Technology, 202, 15–24.
CAS
Article
Google Scholar
Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2, 759–766.
CAS
Article
Google Scholar
Chen, Z., Gong, Y., Fang, X., & Hu, H. (2012). Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World Journal of Microbiology and Biotechnology, 28, 3219–3225.
CAS
Article
Google Scholar
Sánchez-Saavedra, M. P., & Votolina, D. (2006). The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacultural Engineering, 35, 161–165.
Article
Google Scholar
Li, S., Xu, J. L., Chen, J., Chen, J. J., Zhou, C. X., & Yan, X. J. (2014). The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture, 428-429, 104–110.
CAS
Article
Google Scholar
Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226.
CAS
Article
Google Scholar
Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology, 143, 1–9.
CAS
Article
Google Scholar
Xia, L., Song, S., & Hu, C. (2016). High temperature enhances lipid accumulation in nitrogen-deprived Scenedesmus obtusus XJ-15. Journal of Applied Phycology, 28, 831–837.
CAS
Article
Google Scholar
Ramos, M. J., Fernandez, C. M., & Casas, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268.
CAS
Article
Google Scholar
Knothe, G. (2008). “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22, 1358–1364.
CAS
Article
Google Scholar
Sobczuk, T. M., & Chisti, Y. (2010). Potential fuel oils from the microalga Choricystis minor. Journal of Chemical Technology and Biotechnology, 85, 100–108.
Article
Google Scholar
Wang, L. B., Yu, H. Y., He, X. F., & Liu, R. Y. (2012). Influence of fatty acid composition of woody biodiesel plants on the fuel properties. Journal of Fuel Chemistry and Technology, 40, 397–404.
CAS
Article
Google Scholar
Piligaev, A. V., Sorokina, K. N., Bryanskaya, A. V., Peltek, S. E., Kolchanov, N. A., & Parmon, V. N. (2015). Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Research, 12, 368–376.
Article
Google Scholar