Skip to main content

Oleaginous Microalgae from Dairy Farm Wastewater for Biodiesel Production: Isolation, Characterization and Mass Cultivation

Abstract

Producing biodiesel from microalgae grown in wastewater is environment-friendly and cost-effective. The present study investigated the algae found in wastewater of a local dairy farm for their potential as biodiesel feedstocks. Thirteen native algal strains were isolated. On the basis of morphology and 16S/18S rRNA gene sequences, one strain was identified to be a member of cyanobacteria, while other 12 strains belong to green algae. After screening, two Scenedesmus strains out of the 13 microalgae isolates demonstrated superiority in growth rate, lipid productivity, and sedimentation properties, and therefore were selected for further scale-up outdoor cultivation. Both Scenedesmus strains quickly adapted to the outdoor conditions, exhibiting reasonably good growth and strong anti-contamination capabilities. In flat-plate photobioreactors (PBRs), algal cells accumulated predominantly neutral lipids that accounted for over 60% of total lipids with almost 70% being triacylglycerol. In addition, Scenedesmus obliquus had a high content of monounsaturated fatty acids, of which the amount of oleic acid (C18:1) was up to 27.11%. Based on these findings, the dairy farm wastewater-isolated Scenedesmus strains represent promising sources of low-cost, high-quality oil for biofuel production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Marsh, G. (2009). Small wonders: biomass from algae. Renewable Energy Focus, 9(74–76), 78.

    Google Scholar 

  2. Li-Beisson, Y., & Peltier, G. (2013). Third-generation biofuels: current and future research on microalgal lipid biotechnology. Oilseeds and Fats, Crops and Lipids, 20, D606.

    Google Scholar 

  3. Hu, Q., Sommerfeld, M., & Jarvis, E. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54, 621–639.

    CAS  Article  Google Scholar 

  4. Zhou, W. G., Chen, P., Min, M., Ma, X. C., Wang, J. H., Griffith, R., Hussain, F., Peng, P., Xie, Q. L., Li, Y., Shi, J., Meng, J. Z., & Ruan, R. (2014). Environment-enhancing algal biofuel production using wastewaters. Renewable and Sustainable Energy Reviews, 36, 256–269.

    Article  Google Scholar 

  5. Daud, M. N., Abdullah, S. S. R., & Yaakob, Z. (2015). Production of biodiesel and its wastewater treatment technologies: a review. Process Safety and Environmental Protection, 94, 487–508.

    CAS  Article  Google Scholar 

  6. Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels and bioproducts. Biotechnology Advances, 29, 686–702.

    CAS  Article  Google Scholar 

  7. Komolafe, O., Orta, V. S., Monje-Ramirez, I., Yanez, I., Harvey, A. N., & Ledesma, M. O. (2014). Biodiesel production from indigenous microalgae grown in wastewater. Bioresource Technology, 154, 297–304.

    CAS  Article  Google Scholar 

  8. Marinho-Soriano, E., Azevedo, C. A. A., Trigueiro, T. G., Pereira, D. C., Carneiro, M. A. A., & Carnara, M. R. (2011). Bioremediation of aquaculture wastewater using macroalgae and Artemia. International Biodeterioration & Biodegradation, 65, 253–257.

    CAS  Article  Google Scholar 

  9. Hena, S., Fatimah, S., & Tabssum, S. (2015). Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resources and Industry, 10, 1–14.

    Article  Google Scholar 

  10. Park, K. C., Whitney, C. G., Kozera, C., O’Leary, S. J., & McGinn, P. J. (2015). Seasonal isolation of microalgae from municipal wastewater for remediation and biofuel applications. Journal of Applied Microbiology, 119, 76–87.

    CAS  Article  Google Scholar 

  11. Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research, 47, 4294–4302.

    CAS  Article  Google Scholar 

  12. Carlton, J. T. (1999). The scale and ecological consequences of biological invasions in the world’s oceans. In O. T. Sandlund, P. J. Schei, & A. Viken (Eds.), Invasive species and biodiversity management (pp. 195–212). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  13. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35, 171–201.

  14. Hu, H., & Wei, Y. (2006). The freshwater algae of China: Systematics, taxonomy and ecology. Beijing: Science Press.

    Google Scholar 

  15. Bellinger, E. G., & Sigee, D. C. (2010). Freshwater algae: identification and use as bioindicators. Hoboken: Wiley-Blackwell.

    Book  Google Scholar 

  16. Richards, E., Reichardt, M., & Rogers, S. (2003). Preparation of genomic DNA from plant tissue. In M. F. Ausubel (Ed.), Current protocols in molecular biology (pp. 231–237). New York: Wiley.

    Google Scholar 

  17. Blight, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry Physiology, 37, 911–917.

    Article  Google Scholar 

  18. Liu, J., Huang, J., Fan, K. W., Jiang, Y., Zhong, Y., Sun, Z., & Chen, F. (2010). Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 101, 8658–8663.

    CAS  Article  Google Scholar 

  19. Sun, Z., Zhou, Z. G., Gerken, H., Chen, F., & Liu, J. (2015). Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production. Bioresource Technology, 184, 53–62.

    CAS  Article  Google Scholar 

  20. Liu, J., Sommerfeld, M., & Hu, Q. (2013). Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Applied Microbiology Biotechnology, 97, 4785–4798.

    CAS  Article  Google Scholar 

  21. Sun, Z., Liu, J., & Zhou, Z. (2016). Algae for biofuels: An emerging feedstock. In R. Luque (Ed.), Handbook of biofuels’ production: Processes and technologies (2nd ed., pp. 673–698). Cambridge: Woodhead Publishing, Elsevier.

    Google Scholar 

  22. Yu, R. Q., Liu, Y., Tian, S. Q., Yang, Y. X., Li, W., Cao, Y., & Qiao, D. R. (2011). Isolation and identification of oil microalgae and optimization of its culture conditions. China Journal of Applied and Environmental Biology, 17, 897–900.

    CAS  Google Scholar 

  23. Gong, Y., & Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 33, 1269–1284.

    CAS  Article  Google Scholar 

  24. Qi, Q. (2011). The influences of temperature on two marine microalgae growth and polysaccharide content. Journal of Aquaculture, 32, 20–23.

    Google Scholar 

  25. Travieso, L., Hall, D. O., Rao, K. K., Beníteza, F., Sáncheza, E., & Borja, R. (2001). A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. International Biodeterioration & Biodegradation., 47, 151–155.

    CAS  Article  Google Scholar 

  26. Han, F., Pei, H., Hu, W., Han, L., Zhang, S., & Ma, G. (2016). Effect of high-temperature stress on microalgae at the end of the logarithmic phase for the efficient production of lipid. Environmental Technology, 37, 2649–2657.

    CAS  Article  Google Scholar 

  27. Yang, W., Zou, S., He, M., Fei, C., Luo, W., Zheng, S., Chen, B., & Wang, C. (2016). Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations. Bioresource Technology, 202, 15–24.

    CAS  Article  Google Scholar 

  28. Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2, 759–766.

    CAS  Article  Google Scholar 

  29. Chen, Z., Gong, Y., Fang, X., & Hu, H. (2012). Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World Journal of Microbiology and Biotechnology, 28, 3219–3225.

    CAS  Article  Google Scholar 

  30. Sánchez-Saavedra, M. P., & Votolina, D. (2006). The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacultural Engineering, 35, 161–165.

    Article  Google Scholar 

  31. Li, S., Xu, J. L., Chen, J., Chen, J. J., Zhou, C. X., & Yan, X. J. (2014). The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture, 428-429, 104–110.

    CAS  Article  Google Scholar 

  32. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226.

    CAS  Article  Google Scholar 

  33. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology, 143, 1–9.

    CAS  Article  Google Scholar 

  34. Xia, L., Song, S., & Hu, C. (2016). High temperature enhances lipid accumulation in nitrogen-deprived Scenedesmus obtusus XJ-15. Journal of Applied Phycology, 28, 831–837.

    CAS  Article  Google Scholar 

  35. Ramos, M. J., Fernandez, C. M., & Casas, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268.

    CAS  Article  Google Scholar 

  36. Knothe, G. (2008). “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22, 1358–1364.

    CAS  Article  Google Scholar 

  37. Sobczuk, T. M., & Chisti, Y. (2010). Potential fuel oils from the microalga Choricystis minor. Journal of Chemical Technology and Biotechnology, 85, 100–108.

    Article  Google Scholar 

  38. Wang, L. B., Yu, H. Y., He, X. F., & Liu, R. Y. (2012). Influence of fatty acid composition of woody biodiesel plants on the fuel properties. Journal of Fuel Chemistry and Technology, 40, 397–404.

    CAS  Article  Google Scholar 

  39. Piligaev, A. V., Sorokina, K. N., Bryanskaya, A. V., Peltek, S. E., Kolchanov, N. A., & Parmon, V. N. (2015). Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Research, 12, 368–376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-gang Zhou.

Ethics declarations

Funding

Authors acknowledge financial support from the National Natural Science Foundation of China (grant number 31501493), “Young Eastern Scholar Program” at Shanghai Institutions of Higher Learning (grant number QD2015047) and the Special Project of Marine Renewable Energy from the State Oceanic Administration (grant number SHME2011SW02).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Highlights

• Native algal strains were isolated from dairy farm wastewater

• Thirteen strains were identified and classified based on morphology and molecular characterization

• High lipid yields and robustness displayed in indoor/outdoor environments

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Fang, Xp., Li, Xy. et al. Oleaginous Microalgae from Dairy Farm Wastewater for Biodiesel Production: Isolation, Characterization and Mass Cultivation. Appl Biochem Biotechnol 184, 524–537 (2018). https://doi.org/10.1007/s12010-017-2564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2564-7

Keywords

  • Wastewater
  • 16S/18S rRNA
  • Screening
  • Lipids
  • Outdoor PBRs