Advertisement

Applied Biochemistry and Biotechnology

, Volume 184, Issue 2, pp 471–483 | Cite as

Thermal Pretreatment of Harvest Residues and Their Use in Anaerobic Co-digestion with Dairy Cow Manure

  • Đurđica KovačićEmail author
  • Davor Kralik
  • Daria Jovičić
  • Slavko Rupčić
  • Brigita Popović
  • Marina Tišma
Article

Abstract

Several batch experiments were conducted on the anaerobic co-digestion of dairy cow manure (DCM) with three harvest residues (HR) (soybean straw, sunflower stalks, and corn stover). The influence of thermal pretreatment of HR on biogas production was investigated, where the HR were thermally pretreated at two different temperatures: T = 121 °C and T = 175 °C, during t = 30 and t = 90 min, respectively. All anaerobic co-digestion batch experiments were performed simultaneously under thermophilic regime, at T = 55 °C. Biogas and methane yields were significantly improved in experiments performed with corn stover thermally pretreated at 175 °C for 30 min (491.37 cm3/g VS and 306.96 cm3/g VS, respectively), if compared to experiments performed with untreated corn stover. The highest VS and COD removal rates were also observed in the same group of experiments and were 34.5 and 50.1%, respectively. The highest biogas and methane yields with soybean straw (418.93 cm3/g VS and 261.44 cm3/g VS, respectively) were obtained when soybean straw pretreated at 121 °C during 90 min. The highest biogas and methane yields with sunflower stalk (393.28 cm3/g VS and 245.02 cm3/g VS, respectively) were obtained when sunflower stalk was pretreated at 121 °C during 90 min.

Keywords

Anaerobic co-digestion Dairy cow manure Soybean straw Sunflower stalks Corn stover 

Abbreviations

AD

Anaerobic digestion

HR

Harvest residues

DCM

Dairy cow manure

TS

Total solids

VS

Volatile solids

TOC

Total organic carbon

TN

Total extractable nitrogen

COD

Chemical oxygen demand

Notes

Acknowledgements

This work was financially supported by project “ProBioTech - Development of innovative process of agricultural waste biological treatment in biogas production” (RC. 2.2.08-0045), which was co-financed by European regional development fund (ERDF).

References

  1. 1.
    Holm-Nielsen, J. B., Al Seadi, T., & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology, 100, 5478–5484.CrossRefGoogle Scholar
  2. 2.
    Adelard, L., Poulsen, T. G., & Rakotoniaina, V. (2015). Biogas and methane yield in response to co- and separate digestion of biomass wastes. Waste Management and Research, 33(1), 55–62.CrossRefGoogle Scholar
  3. 3.
    Borowski, S., Domański, J., & Weatherley, L. (2014). Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Management, 34, 513–521.CrossRefGoogle Scholar
  4. 4.
    Kafle, G. K., & Kim, S. H. (2013). Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation. Appl. Energ., 103, 61–72.CrossRefGoogle Scholar
  5. 5.
    Zhang, T., Yang, Y., Liu, L., Han, Y., Ren, G., & Yang, G. (2014). Improved biogas production from chicken manure anaerobic digestion using cereal residues as co-substrates. Energ. Fuel., 28(4), 2490–2495.CrossRefGoogle Scholar
  6. 6.
    Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940.CrossRefGoogle Scholar
  7. 7.
    Zhang, T., Liu, L., Song, Z., Ren, G., Feng, Y., Han, X., & Yang, G. (2013). Biogas production by co-digestion of goat manure with three crop residues. PloS One, 8(6), e66845.CrossRefGoogle Scholar
  8. 8.
    Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, 14, 578–597.CrossRefGoogle Scholar
  9. 9.
    Kukić, S., Bračun, B., Kralik, D., Burns, R. T., Rupčić, S., & Jovičić, D. (2010). Comparison between biogas production from manure of laying heners and broilers. Poljoprivreda, 16, 67–72.Google Scholar
  10. 10.
    Tišma, M., Žnidaršič-Plazl, P., Vasić-Rački, Đ., & Zelić, B. (2012). Optimization of laccase production by Trametes versicolor cultivated on industrial waste. Applied Biochemistry and Biotechnology, 166, 36–46.CrossRefGoogle Scholar
  11. 11.
    Saratale, G. D., Kshirsagar, S. D., Sampange, V. T., Saratale, R. G., Oh, S.-E., & Govindwar, S. P. (2014). Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Applied Biochemistry and Biotechnology, 174(8), 2801–2817.CrossRefGoogle Scholar
  12. 12.
    Villas-Bôas, S. G., Esposito, E., & Mitchell, D. A. (2002). Microbial conversion of lignocellulosic residues for production of animal feeds. Anim. Feed Sci. Tech., 98(1), 1–12.CrossRefGoogle Scholar
  13. 13.
    Planinić, M., Zelić, B., Čubel, I., Bucić-Kojić, A., & Tišma, M. (2016). Corn forage biological pretreatment by Trametes versicolor in a tray bioreactor. Waste Management and Research, 34, 802–809.CrossRefGoogle Scholar
  14. 14.
    Databases, S. Croatian Bureau of Statistics (CBS). Zagreb. Google Scholar
  15. 15.
    Country reports for the State of the World’s Plant Genetic Resources 2008. Available from: http://www.fao.org/docrep/013/i1500e/i1500e.pdf (Accessed: April 7 2017).
  16. 16.
    Ullah, K., Sharma, V. K., Dhingra, S., Braccio, G., Ahmad, M., & Sofia, S. (2015). Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renewable and Sustainable Energy Reviews, 51, 682–698.CrossRefGoogle Scholar
  17. 17.
    Vlyssides, A., Mai, S., & Barampouti, E. M. (2015). Energy generation potential in Greece from agricultural residues and livestock manure by anaerobic digestion technology. Waste Biomass. Valor., 6, 747–757.CrossRefGoogle Scholar
  18. 18.
    Li, J., Wei, L., Duan, Q., Hu, G., & Zhang, G. (2014). Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresource Technology, 156, 307–313.CrossRefGoogle Scholar
  19. 19.
    Wu, X., Yao, W., Zhu, J., & Miller, C. (2010). Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresource Technology, 101, 4042–4047.CrossRefGoogle Scholar
  20. 20.
    Xavier, C. A. N., Moset, V., Wahid, R., & Møller, H. B. (2015). The efficiency of shredded and briquetted wheat straw in anaerobic co-digestion with dairy cattle manure. Biosystems Engineering, 139, 16–24.CrossRefGoogle Scholar
  21. 21.
    Dinuccio, E., Balsari, P., Gioelli, F., & Menardo, S. (2010). Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology, 101, 3780–3783.CrossRefGoogle Scholar
  22. 22.
    Zhang, Z., Zhang, G., Li, W., Li, C., & Xu, G. (2016). Enhanced biogas production from sorghum stem by co-digestion with cow manure. Int. J. Hydrogen Energ., 41(21), 9153–9158.CrossRefGoogle Scholar
  23. 23.
    Lehtomäki, A., Huttunen, S., & Rintala, J. A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour. Conserv. Recy., 51(3), 591–609.CrossRefGoogle Scholar
  24. 24.
    Cuetos, M. J., Fernández, C., Gómez, X., & Morán, A. (2011). Anaerobic co-digestion of swine manure with energy crop residues. Biotechnology and Bioprocess Engineering, 16, 1044–1052.CrossRefGoogle Scholar
  25. 25.
    Tišma, M., Žnidaršič-Plazl, P., Plazl, I., Vasić-Rački, D., & Bruno, Z. (2010). Oxidation of coniferyl alcohol catalyzed by laccases from Trametes versicolor. Acta Chimica Slovenica, 57, 110–117.Google Scholar
  26. 26.
    Krishania, M., Vijay, V. K., & Chandra, R. (2013). Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy, 57, 359–367.CrossRefGoogle Scholar
  27. 27.
    Menardo, S., Airoldi, G., & Balsari, P. (2012). The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresource Technology, 104, 708–714.CrossRefGoogle Scholar
  28. 28.
    Qiao, W., Yan, X., Ye, J., Sun, Y., Wang, W., & Zhang, Z. (2011). Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energ., 36, 3313–3318.CrossRefGoogle Scholar
  29. 29.
    Sambusiti, C., Monlau, F., Ficara, E., Carrère, H., & Malpei, F. (2013). A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl. Energ., 104, 62–70.CrossRefGoogle Scholar
  30. 30.
    Zheng, M., Li, X., Li, L., Yang, X., & He, Y. (2009). Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresource Technology, 100, 5140–5145.CrossRefGoogle Scholar
  31. 31.
    Chandra, R., Takeuchi, H., Hasegawa, T., & Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43, 273–282.CrossRefGoogle Scholar
  32. 32.
    Mackul’ak, T., Prousek, J., Švorc, L., & Drtil, M. (2012). Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chemical Papers, 66(7), 649–653.Google Scholar
  33. 33.
    Canam, T., Town, J. R., Tsang, A., McAllister, T. A., & Dumonceaux, T. J. (2011). Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresource Technology, 102, 10020–10027.CrossRefGoogle Scholar
  34. 34.
    Hjorth, M., Gränitz, K., Adamsen, A. P. S., & Møller, H. B. (2011). Extrusion as a pretreatment to increase biogas production. Bioresource Technology, 102, 4989–4994.CrossRefGoogle Scholar
  35. 35.
    Monlau, F., Barakat, A., Steyer, J. P., & Carrère, H. (2012). Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion on sunflower stalks. Bioresource Technology, 120, 241–247.CrossRefGoogle Scholar
  36. 36.
    Zhao, L., Cao, G.-L., Wang, A.-J., Ren, H.-Y., Dong, D., Liu, Z.-N., Guan, X.-Y., Xu, C.-J., & Ren, N.-Q. (2012). Fungal pretreatment of corn stalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresource Technology, 114, 365–369.CrossRefGoogle Scholar
  37. 37.
    Brown, D., Shi, J., & Li, Y. (2012). Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource Technology, 124, 379–386.CrossRefGoogle Scholar
  38. 38.
    Risberg, K., Sun, L., Levén, L., Horn, S. J., & Schnürer, A. (2013). Biogas production from wheat straw and manure—impact of pretreatment and process operating parameters. Bioresource Technology, 149, 232–237.CrossRefGoogle Scholar
  39. 39.
    Li, Y. Y., Dong, B. X., Quan, Z., Chen, J. B., Liu, J., Cui, Z. J., & Cheng, X. (2012). Biogas productivity potential of agricultural residue straw as mono-fermentation substrate. Adv. Mat. Res. Vols., 347-353, 2582–2586.CrossRefGoogle Scholar
  40. 40.
    Hesami, S. M., Zilouei, H., Karimi, K., & Asadinezhad, A. (2015). Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment. Industrial Crops and Products, 76, 449–455.CrossRefGoogle Scholar
  41. 41.
    Maroušek, J. (2013). Pretreatment of sunflower stalks for biogas production. Clean Technol. Envir., 15(4), 735–740.CrossRefGoogle Scholar
  42. 42.
    Schroyen, M., Vervaeren, H., Van Hulle, S. W. H., & Raes, K. (2014). Impact of enzymatic pretreatment on corn stover degradation and biogas production. Bioresource Technology, 173, 59–66.CrossRefGoogle Scholar
  43. 43.
    Zhou, S., Zhang, Y., & Dong, Y. (2012). Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy, 46, 644–648.CrossRefGoogle Scholar
  44. 44.
    Liu, S., Wu, S., Pang, C., Li, W., & Dong, R. (2014). Microbial pretreatment of corn stover by solid-state cultivation of Phanerochaete chrysosporium for biogas production. Applied Biochemistry and Biotechnology, 172, 1365–1376.CrossRefGoogle Scholar
  45. 45.
    Fang, W., Weisheng, N., Andong, Z., & Weiming, Y. (2015). Enhanced anaerobic digestion of corn stover by thermo-chemical pretreatment. Int. J. Agric. & Biol. Eng., 8(1), 84–90.Google Scholar
  46. 46.
    American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater (20th ed.), Washington DC, USA (1998).Google Scholar
  47. 47.
    ISO 14235 (1998). Soil quality – Determination of organic carbon by sulfochromic oxidation.Google Scholar
  48. 48.
    Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications). Washington: U.S. Agricultural Research Service.Google Scholar
  49. 49.
    Pan, M. Z., Zhou, D. G., Mei, C. T., Deng, J., Wang, X. M., & Zhang, T. S. Y. (2008). Effects of thermomechanical refining conditions on the morphology and thermal properties of wheat straw fiber. Holzforschung, 62, 338–343.CrossRefGoogle Scholar
  50. 50.
    Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energ. Combust., 42, 35–53.CrossRefGoogle Scholar
  51. 51.
    Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Sci. Technol., 44, 793.810.CrossRefGoogle Scholar
  52. 52.
    Ferreira, L. C., Donoso-Bravo, A., Nilsen, P. J., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2013). Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresource Technology, 143, 251–257.CrossRefGoogle Scholar
  53. 53.
    Sapci, Z., Linjordet, R., & Morken, J. (2012). Effect of thermal pretreated agricultural residual on biogas production. Energy, biomass and biological residues. International Conference of Agricultural Engineering-CIGR-AgEng: Agriculture and Engineering for a Healthier Life, Valencia, Spain, 8–12 July 2012.Google Scholar
  54. 54.
    Dupont, C., Chiriac, R., Gauthier, G., & Toche, F. (2013). Heat capacity measurements of various biomass types and pyrolysis residues. Fuel, 115, 644–651.CrossRefGoogle Scholar
  55. 55.
    Gupta, M., Yang, J., & Roy, C. (2003). Specific heat and thermal conductivity of softwood bark and softwood char particles. Fuel, 82, 919–927.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Agriculture in OsijekJ. J. Strossmayer University of OsijekOsijekCroatia
  2. 2.Faculty of Electrical Engineering, Computer Science and Information Technology OsijekJ. J. Strossmayer University of OsijekOsijekCroatia
  3. 3.Faculty of Food Technology OsijekJ. J. Strossmayer University of OsijekOsijekCroatia

Personalised recommendations