Skip to main content

Biogas Production from Distilled Grain Waste by Thermophilic Dry Anaerobic Digestion: Pretreatment of Feedstock and Dynamics of Microbial Community

Abstract

Distilled grain waste (DGW) eluted from the Chinese liquor making process poses potential serious environmental problems. The objective of this study is to evaluate the feasibility of converting DGW to biogas by thermophilic dry anaerobic digestion. To improve biogas production, the effects of dilute H2SO4 and thermal pretreatment on DGW were evaluated by biochemical methane potential (BMP) tests. The results indicate that 90 °C thermal pretreatment provided the highest methane production at 212.7 mL/g-VTSadd. The long-term thermophilic dry anaerobic digestion process was conducted in a 5-L separable flask for more than 3 years at a volatile total solid (VTS) loading rate of 1 g/kg-sludge/d, using synthetic waste, untreated and 90 °C thermal pretreated DGW as the feedstock, respectively. A higher methane production, 451.6 mL/g-VTSadd, was obtained when synthetic waste was used; the methane production decreased to 139.4 mL/g-VTSadd when the untreated DGW was used. The 90 °C thermal pretreated DGW increased the methane production to 190.5 mL/g-VTSadd, showing an increase of 36.7% in methane production compared with that using untreated DGW. The microbial community structure analysis indicates that the microbial community in the thermophilic dry anaerobic digestion system maintained a similar structure when untreated or pretreated DGW was used, whereas the structure differed significantly when synthetic waste was used as the feedstock.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zhang, J., Zhang, W. X., Wu, Z. Y., Yang, J., Liu, Y. H., Zhong, X., & Deng, Y. (2013). A comparison of different dilute solution explosions pretreatment for conversion of distillers' grains into ethanol. Preparative Biochemistry & Biotechnology, 43, 1–21.

    Article  Google Scholar 

  2. Tan, L., Sun, Z. Y., Zhang, W. X., Tang, Y. Q., Morimura, S., & Kida, K. (2014). Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process. Bioprocess and Biosystems Engineering, 37, 2031–2038.

    CAS  Article  Google Scholar 

  3. Zhang, J., Zhang, W. X., Li, S. Z., You, L., Zhang, C., Sun, C. Z., & Liu, X. B. (2013). A two-step fermentation of distillers' grains using Trichoderma viride and Rhodopseudomonas palustris for fish feed. Bioprocess and Biosystems Engineering, 36, 1435–1443.

    CAS  Article  Google Scholar 

  4. Guendouz, J., Buffiere, P., Cacho, J., Carrere, M., & Delgenes, J. P. (2008). High-solids anaerobic digestion: comparison of three pilot scales. Water Science and Technology, 58, 1757–1763.

    CAS  Article  Google Scholar 

  5. Ahn, J. H., & Forster, C. (2000). A comparison of mesophilic and thermophilic anaerobic upflow filters. Bioresource Technology, 73, 201–205.

    CAS  Article  Google Scholar 

  6. Bagge, E., Sahlström, L., & Albihn, A. (2005). The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Research, 39, 4879–4886.

    CAS  Article  Google Scholar 

  7. Li, Y. F., Nelson, M. C., Chen, P. H., Graf, J., Li, Y., & Yu, Z. (2015). Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Applied Microbiology and Biotechnology, 99, 969–980.

    CAS  Article  Google Scholar 

  8. Klimiuk, E., Pokój, T., Budzyński, W., & Dubis, B. (2010). Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresource Technology, 101, 9527–9535.

    CAS  Article  Google Scholar 

  9. Monlau, F., Latrille, E., Da Costa, A. C., Steyer, J. P., & Carrère, H. (2013). Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Applied Energy, 102, 1105–1113.

    CAS  Article  Google Scholar 

  10. Us, E., & Perendeci, N. A. (2012). Improvement of methane production from greenhouse residues: optimization of thermal and H2SO4 pretreatment process by experimental design. Chemical Engineering Journal, 181, 120–131.

    Article  Google Scholar 

  11. Tang, Y. Q., Ji, P., Hayashi, J., Koike, Y., Wu, X. L., & Kida, K. (2011). Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Applied Microbiology and Biotechnology, 91, 1447–1461.

    CAS  Article  Google Scholar 

  12. Sun, Z. Y., Zhang, J., Zhong, X. Z., Tan, L., Tang, Y. Q., & Kida, K. (2016). Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system. Waste Management, 51, 55–64.

    Article  Google Scholar 

  13. Nelson, M. C., Morrison, H. G., Benjamino, J., Grim, S. L., & Graf, J. (2014). Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PloS One, 9, e94249.

    Article  Google Scholar 

  14. Van Soest, P. J., Robertson, J., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

    Article  Google Scholar 

  15. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2011). Determination of structural carbohydrates and lignin in Biomass. National Renewable Energy Laboratory. Technical Report NERL/TP-510-42618.

  16. Sun, Z. Y., Tang, Y. Q., Iwanaga, T., Sho, T., & Kida, K. (2011). Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresource Technology, 102, 10929–10935.

    CAS  Article  Google Scholar 

  17. Tang, Y. Q., Fujimura, Y., Shigematsu, T., Morimura, S., & Kida, K. (2007). Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater. Journal of Bioscience and Bioengineering, 104, 281–287.

    CAS  Article  Google Scholar 

  18. Buswell, A., & Mueller, H. (1952). Mechanism of methane fermentation. Industrial and Engineering Chemistry, 44, 550–552.

    CAS  Article  Google Scholar 

  19. Koch, K., Wichern, M., Lübken, M., & Horn, H. (2009). Mono fermentation of grass silage by means of loop reactors. Bioresource Technology, 100, 5934–5940.

    CAS  Article  Google Scholar 

  20. Parikh, J., Channiwala, S., & Ghosal, G. (2007). A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, 86, 1710–1719.

    CAS  Article  Google Scholar 

  21. Azbar, N., Keskin, T., & Yuruyen, A. (2008). Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass and Bioenergy, 32, 1195–1201.

    CAS  Article  Google Scholar 

  22. Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    CAS  Article  Google Scholar 

  23. Gossett, J. M., Stuckey, D. C., Owen, W. F., & McCarty, P. L. (1982). Heat treatment and anaerobic digestion of refuse. Journal of the Environmental Engineering Division, 108, 437–454.

    CAS  Google Scholar 

  24. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    CAS  Article  Google Scholar 

  25. Zhao, R., Zhang, Z., Zhang, R., Li, M., Lei, Z., Utsumi, M., & Sugiura, N. (2010). Methane production from rice straw pretreated by a mixture of acetic-propionic acid. Bioresource Technology, 101, 990–994.

    CAS  Article  Google Scholar 

  26. Zeshan Karthikeyan, O. P., & Visvanathan, C. (2012). Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresource Technology, 113, 294–302.

    Article  Google Scholar 

  27. Smith, D. R., Doucette-Stamm, L. A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., & Gilbert, K. (1997). Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. Journal of Bacteriology, 179, 7135–7155.

    CAS  Article  Google Scholar 

  28. Martin, M. R., Fornero, J. J., Stark, R., Mets, L., & Angenent, L. T. (2013). A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2. Archaea, 157529.

  29. Zinder, S., Sowers, K., & Ferry, J. (1985). Notes: Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 35, 522–523.

    Google Scholar 

  30. Maus, I., Wibberg, D., Stantscheff, R., Eikmeyer, F.-G., Seffner, A., Boelter, J., Szczepanowski, R., Blom, J., Jaenicke, S., & König, H. (2012). Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2T, isolated from a sewage sludge digester. Journal of Bacteriology, 194, 5487–5488.

    CAS  Article  Google Scholar 

  31. Sasaki, D., Hori, T., Haruta, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2011). Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. Journal of Bioscience and Bioengineering, 111, 41–46.

    CAS  Article  Google Scholar 

  32. Shigematsu, T., Tang, Y., Kawaguchi, H., Ninomiya, K., Kijima, J., Kobayashi, T., Morimura, S., & Kida, K. (2003). Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. Journal of Bioscience and Bioengineering, 96, 547–558.

    CAS  Article  Google Scholar 

  33. Hania, W. B., Godbane, R., Postec, A., Hamdi, M., Ollivier, B., & Fardeau, M. L. (2012). Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. International Journal of Systematic and Evolutionary Microbiology, 62, 1377–1382.

    Article  Google Scholar 

  34. Bouanane-Darenfed, A., Fardeau, M. L., Grégoire, P., Joseph, M., Kebbouche-Gana, S., Benayad, T., Hacene, H., Cayol, J.-L., & Ollivier, B. (2011). Caldicoprobacter algeriensis sp. nov. a new thermophilic anaerobic, xylanolytic bacterium isolated from an Algerian hot spring. Current Microbiology, 62, 826–832.

    CAS  Article  Google Scholar 

  35. Westerholm, M., Roos, S., & Schnürer, A. (2010). Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiology Letters, 309, 100–104.

    CAS  Google Scholar 

  36. Goux, X., Calusinska, M., Lemaigre, S., Marynowska, M., Klocke, M., Udelhoven, T., Benizri, E., & Delfosse, P. (2015). Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnology for Biofuels, 8, 122.

    Article  Google Scholar 

  37. Wu, W., Hickey, R., & Zeikus, J. (1991). Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Applied and Environmental Microbiology, 57, 3438–3449.

    CAS  Google Scholar 

  38. Takaki, M., Tan, L., Murakami, T., Tang, Y. Q., Sun, Z. Y., Morimura, S., & Kida, K. (2015). Production of biofuels from sweet sorghum juice via ethanol-methane two-stage fermentation. Industrial Crops and Products, 63, 329–336.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Program of Sichuan Province (2017JY0110) and the Scientific Research Foundation of Bureau of Science and Technology of Luzhou City (2015CDLZ-S06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yong Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 66 kb)

ESM 2

(DOC 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, TT., Sun, ZY., Huang, YL. et al. Biogas Production from Distilled Grain Waste by Thermophilic Dry Anaerobic Digestion: Pretreatment of Feedstock and Dynamics of Microbial Community. Appl Biochem Biotechnol 184, 685–702 (2018). https://doi.org/10.1007/s12010-017-2557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2557-6

Keywords

  • Distilled grain waste
  • Thermophilic dry anaerobic digestion
  • Biogas
  • Biochemical methane potentialS
  • Thermal pretreatment
  • Microbial community