Skip to main content
Log in

Structure and Functional Characterisation of a Distinctive β-Lactamase from an Environmental Strain EMB20 of Bacillus cereus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The rampant use and misuse of antibiotics in human medicine, agriculture and veterinary have become the key contributors to global antimicrobial resistance. One of the significant resistance mechanisms that inactivates antibiotics and impedes treatment of bacterial infections is the expression of β-lactamases. Rising evidence of newer variants of β-lactamases in the environment is therefore a serious threat to the presently available antibiotic armoury. The present work describes the purification of a variant β-lactamase isolated from a soil strain EMB20 of Bacillus cereus. The lactamase was purified using three-phase partitioning and gel filtration chromatography to a 30-fold purification and 15% recovery yield. Contrary to the general trend, the lactamase was not a metalloenzyme, but its activity was enhanced in the presence of Mg2+ and Mn2+. The EMB20 lactamase exhibited improved stability against inhibitors and denaturing agents such as urea and GdmCl as compared to its commercial analogue. The improved stability of EMB20 lactamase was further validated by circular dichroism and fluorescence spectroscopy. This study reemphasizes the rising prevalence of environmental lactamase variants. Decoding the structure–function correlation of such lactamases in the presence of inhibitors will provide insights into the response of this enzyme towards inhibitors as well as its substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance. London: HM Government and the Wellcome Trust.

    Google Scholar 

  2. Chen, J., Chen, H., Shi, Y., Hu, F., Lao, X., Gao, X., Zheng, H., & Yao, W. (2013). Probing the effect of the non-active-site mutation Y229W in New Delhi metallo-β-lactamase-1 by site-directed mutagenesis, kinetic studies, and molecular dynamics simulations. PloS One, 8, 1–8.

    CAS  Google Scholar 

  3. Eze, U. A., Eze, N. M., & Mustapha, A. (2015). Enzymatic inactivation of penicillins: an emerging threat to global public health. International Journal of Pharmaceutical Sciences and Research, 6, 3151–3160.

    CAS  Google Scholar 

  4. Rawat, D., & Nair, D. (2010). Extended-spectrum ß-lactamases in gram negative bacteria. Journal of Global Infectious Diseases, 2, 263–274.

    PubMed  PubMed Central  Google Scholar 

  5. Zeng, X., & Lin, J. (2013). Beta-lactamase induction and cell wall metabolism in gram-negative bacteria. Frontiers in Microbiology, 4, 1–9.

    Google Scholar 

  6. Castanheira, M., Farrell, S. E., Krause, K. M., Jones, R. N., & Sader, H. S. (2014). Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrobial Agents and Chemotherapy, 58, 833–838.

    PubMed  PubMed Central  Google Scholar 

  7. Tajbakhsh, M., Avini, M. Y., Alikhajeh, J., Tajeddin, E., Rahbar, M., Eslami, P., Alebouyeh, M., & Zali, M. R. (2016). Emergence of blaCTX-M-15, blaTEM-169 and blaPER-1 extended-spectrum beta-lactamase genes among different Salmonella enterica serovars from human faecal samples. Infectious Diseases, 48, 550–556.

    CAS  PubMed  Google Scholar 

  8. Thomas, P. W., Zheng, M., Wu, S., Guo, H., Liu, D., Xu, D., & Fast, W. (2011). Characterization of purified New Delhi metallo-β-lactamase-1. Biochemistry, 50, 10102–10113.

    CAS  PubMed  Google Scholar 

  9. Schlesinger, S. R., Kim, S. G., Lee, J.-S., & Kim, S.-K. (2011). Purification development and characterization of the zinc-dependent metallo-β-lactamase from Bacillus anthracis. Biotechnology Letters, 33, 1417–1422.

    CAS  PubMed  Google Scholar 

  10. D’Angelo, R. G., Johnson, J. K., Bork, J. T., & Heil, E. L. (2016). Treatment options for extended-spectrum beta-lactamase (ESBL) and AmpC-producing bacteria. Expert Opinion on Pharmacotherapy, 17, 953–967.

    PubMed  Google Scholar 

  11. Verma, D., Jacobs, D. J., & Livesay, D. R. (2013). Variations within class-A beta-lactamase physiochemical properties reflect evolutionary and environmental patterns, but not antibiotic specificity. PLoS Computational Biology, 9, e1003155.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown, M. C., Verma, D., Russell, C., Jacobs, D. J., & Livesay, D. R. (2014). A case study comparing quantitative stability-flexibility relationships across five metallo-beta-lactamases highlighting differences within NDM-1. Methods in molecular biology (Clifton, N.J.), 1084, 227–238.

    CAS  Google Scholar 

  13. Shanthi, J., Senthil, A., Gopikrishnan, V., & Balagurunathan, R. (2015). Characterization of a potential β-lactamase inhibitory metabolite from a marine streptomyces sp. Pm49 active against multidrug-resistant pathogens. Applied Biochemistry and Biotechnology, 175, 3696–3708.

    CAS  PubMed  Google Scholar 

  14. Yusof, Y., Tan, D. T., Arjomandi, O. K., Schenk, G., & McGeary, R. P. (2016). Captopril analogues as metallo-beta-lactamase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26, 1589–1593.

    CAS  Google Scholar 

  15. Sgrignani, J., Novati, B., Colombo, G., & Grazioso, G. (2015). Covalent docking of selected boron-based serine beta-lactamase inhibitors. Journal of Computer-Aided Molecular Design, 29, 441–450.

    CAS  PubMed  Google Scholar 

  16. Azumah, R., Dutta, J., Somboro, A. M., Ramtahal, M., Chonco, L., Parboosing, R., Bester, L. A., Kruger, H. G., Naicker, T., Essack, S. Y., & Govender, T. (2016). In vitro evaluation of metal chelators as potential metallo-beta-lactamase inhibitors. Journal of Applied Microbiology, 120, 860–867.

    CAS  PubMed  Google Scholar 

  17. Nguyen, H. M., Shier, K. L., & Graber, C. J. (2014). Determining a clinical framework for use of cefepime and beta-lactam/beta-lactamase inhibitors in the treatment of infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae. The Journal of Antimicrobial Chemotherapy, 69, 871–880.

    CAS  PubMed  Google Scholar 

  18. Zhai, L., Zhang, Y. L., Kang, J. S., Oelschlaeger, P., Xiao, L., Nie, S. S., & Yang, K. W. (2016). Triazolylthioacetamide: a valid scaffold for the development of New Delhi metallo-beta-lactmase-1 (NDM-1) inhibitors. ACS Medicinal Chemistry Letters, 7, 413–417.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sinha, A., Pant, K. K., & Khare, S. K. (2012). Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. International Biodeterioration & Biodegradation, 71, 1–8.

    CAS  Google Scholar 

  20. Sawai, T., Takahashi, I., & Yamagishi, S. (1978). Iodometric assay method for beta-lactamase with various beta-lactam antibiotics as substrates. Antimicrobial Agents and Chemotherapy, 13, 910–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  PubMed  Google Scholar 

  22. O’Callaghan, C. H., Morris, A., Kirby, S. M., & Shingler, A. (1972). Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrobial Agents and Chemotherapy, 1, 283–288.

    PubMed  PubMed Central  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  24. Eftekhar, F., & Rafiee, R. (2006). An overlay gel method for identification and isolation of bacterial β-lactamases. Journal of Microbiological Methods, 64, 132–134.

    CAS  PubMed  Google Scholar 

  25. Dennison, C., & Lovrien, R. (1997). Three phase partitioning: concentration and purification of proteins. Protein Expression and Purification, 11, 149–161.

    CAS  PubMed  Google Scholar 

  26. Raghava, S., Barua, B., Singh, P. K., Das, M., Madan, L., Bhattacharyya, S., Bajaj, K., Gopal, B., Varadarajan, R., & Gupta, M. N. (2008). Refolding and simultaneous purification by three-phase partitioning of recombinant proteins from inclusion bodies. Protein Science, 17, 1987–1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Duman, Y. A., & Kaya, E. (2013). Three-phase partitioning as a rapid and easy method for the purification and recovery of catalase from sweet potato tubers (Solanum tuberosum). Applied Biochemistry and Biotechnology, 170, 1119–1126.

    CAS  PubMed  Google Scholar 

  28. Li, T., Wang, Q., Chen, F., Li, X., Luo, S., Fang, H., Wang, D., Li, Z., Hou, X., & Wang, H. (2013). Biochemical characteristics of New Delhi metallo-β-lactamase-1 show unexpected difference to other MBLs. PloS One, 8, 1–5.

    Google Scholar 

  29. Krasauskas, R., Labeikyte, D., Markuckas, A., Povilonis, J., Armalyte, J., Planciuniene, R., Kavaliauskas, P., & Suziedeliene, E. (2015). Purification and characterization of a new beta-lactamase OXA-205 from Pseudomonas aeruginosa. Annals of Clinical Microbiology and Antimicrobials, 14, 1–8.

    Google Scholar 

  30. Myers, J. L., & Shaw, R. W. (1989). Production, purification and spectral properties of metal-dependent β-lactamases of Bacillus cereus. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 995, 264–272.

    CAS  Google Scholar 

  31. Badarau, A., Damblon, C., & Page, M. I. (2007). The activity of the dinuclear cobalt-β-lactamase from Bacillus cereus in catalysing the hydrolysis of β-lactams. Biochemical Journal, 401, 197–203.

    CAS  Google Scholar 

  32. Perry, J. A., & Wright, G. D. (2013). The antibiotic resistance "mobilome": searching for the link between environment and clinic. Frontiers in Microbiology, 4, 1–7.

    Google Scholar 

  33. Rehman, R., Ahmed, M., Siddique, A., Hasan, F., Hameed, A., & Jamal, A. (2016). Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Applied Biochemistry and Biotechnology, 181, 434–450.

    PubMed  Google Scholar 

  34. Kotlarek, D., & Worch, R. (2016). New insight into metal ion-driven catalysis of nucleic acids by influenza PA-Nter. PloS One, 11, 1–16.

    Google Scholar 

  35. Orellano, E. G., Girardini, J. E., Cricco, J. A., Ceccarelli, E. A., & Vila, A. J. (1998). Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry, 37, 10173–10180.

    CAS  PubMed  Google Scholar 

  36. Heinz, U., & Adolph, H.-W. (2004). Metallo-β-lactamases: two binding sites for one catalytic metal ion? Cellular and Molecular Life Sciences, 61, 2827–2839.

    CAS  PubMed  Google Scholar 

  37. Davies, A. M., Rasia, R. M., Vila, A. J., Sutton, B. J., & Fabiane, S. M. (2005). Effect of pH on the active site of an Arg121Cys mutant of the metallo-β-lactamase from Bacillus cereus: implications for the enzyme mechanism. Biochemistry, 44, 4841–4849.

    CAS  PubMed  Google Scholar 

  38. Drawz, S. M., & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23, 160–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, X. Q., Wang, J., Lü, Z. R., Tang, H. M., Park, D., Oh, S. H., Bhak, J., Shi, L., Park, Y. D., & Zou, F. (2010). Alpha-glucosidase folding during urea denaturation: enzyme kinetics and computational prediction. Applied Biochemistry and Biotechnology, 160, 1341–1355.

    CAS  PubMed  Google Scholar 

  40. Halim, A. A. A., Feroz, S. R., & Tayyab, S. (2013). Does recovery in the spectral characteristics of GdnHCl-denatured Bacillus licheniformis α-amylase due to added calcium point towards protein stabilization? Bioscience, biotechnology and biochemistry, 77, 87–96.

    Google Scholar 

  41. Hassani, L., & Nourozi, R. (2014). Modification of lysine residues of horseradish peroxidase and its effect on stability and structure of the enzyme. Applied Biochemistry and Biotechnology, 172, 3558–3569.

    CAS  PubMed  Google Scholar 

  42. Sinha, R., & Khare, S. (2014). Structural changes in halophilic and non-halophilic proteases in response to chaotropic reagents. The Protein Journal, 33, 394–402.

    CAS  PubMed  Google Scholar 

  43. Pain, R. (2005) Determining the CD spectrum of a protein. Current Protocols in Protein Science, 7.6. 1–7.6. 24.

  44. Kashanian, S., Ravan, H., Ghobadi, S., Omidfar, K., & Askari, S. (2008). Structural and functional study of rabbit polyclonal antibody for immunoassay purposes. Hybridoma, 27, 48–53.

    CAS  PubMed  Google Scholar 

  45. Karan, R., & Khare, S. (2011). Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochemistry (Moscow), 76, 686.

    CAS  Google Scholar 

  46. Rashid, F., Sharma, S., & Bano, B. (2005). Comparison of guanidine hydrochloride (GdnHCl) and urea denaturation on inactivation and unfolding of human placental cystatin (HPC). The Protein Journal, 24, 283–292.

    CAS  PubMed  Google Scholar 

  47. Sidek, N. A. A., Halim, A. A. A., & Tayyab, S. (2010). Denatured states of ficin induced by urea and guanidine hydrochloride. Turkish Journal of Biochemistry, 35, 45–49.

    Google Scholar 

Download references

Acknowledgements

The financial assistance provided to AS by the Ministry for Human Resource and Development and IIT Delhi is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Khare.

Electronic supplementary material

Fig. S1

(PDF 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadaf, A., Sinha, R. & Khare, S.K. Structure and Functional Characterisation of a Distinctive β-Lactamase from an Environmental Strain EMB20 of Bacillus cereus . Appl Biochem Biotechnol 184, 197–211 (2018). https://doi.org/10.1007/s12010-017-2539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2539-8

Keywords

Navigation