Applied Biochemistry and Biotechnology

, Volume 183, Issue 4, pp 1478–1487 | Cite as

Utilization of Starch-Enriched Brewery (Rice Wine) Waste for Mixotrophic Cultivation of Ettlia Sp. YC001 Used in Biodiesel Production

  • Yeji Kam
  • Mina Sung
  • Hoon Cho
  • Chang-Min Kang
  • Jungmin Kim
  • Jong-In HanEmail author


Starch-enriched brewery waste (SBW), an unexplored feedstock, was investigated as a nutritious low-cost source for the mixotrophic cultivation of Ettlia sp. YC001 for biodiesel production. Stirring, autoclaving, and sonication were assessed for the SBW, in conjunction with pH. Stirring at 55 °C was found to be the best, in terms of the effectiveness of starch hydrolysis and yeast disintegration as well as cost. The treated solutions were found to support the mixotrophic growth of microalgae: 20 g/L of glucose medium resulted in the highest biomass production of 9.26 g/L and one with 10 g/L of glucose showed the best lipid productivity of 244.2 mg/L/day. The unsaturated fatty acids increased in the resulting lipid and thus quality well suited for the transportation fuel. All these suggested that SBW, when treated properly, could indeed serve as a cheap feedstock for microalgae-based biodiesel production.


Biodiesel Starch-enriched brewery waste Makgeolli Ettlia sp. Mixotrophic cultivation 



This work is financially supported by Grant KK-1605 from the Korea Institute of Toxicology. This work is also financially supported by Korea Minister of Ministry of Land, Infrastructure and Transport (MOLIT) as U-City Masters and Doctor Course Grant Program.


  1. 1.
    Alexandre, H., & Guilloux-benatier, M. (2006). Yeast autolysis in sparkling wine—a review. Australian Journal of Grape and Wine Research, 12, 119–127.CrossRefGoogle Scholar
  2. 2.
    Babayan, T. L., Bezrukov, M. G., Latov, K. V., Belikov, V. M., Belatseva, E., & Titova, E. F. (1981). Induced autolysis of Saccharomyces cerevisiae: morphological effects, rheological effects and dynamics of accumulation of extracellular hydrolysis products. Current Microbiology, 5, 163–168.CrossRefGoogle Scholar
  3. 3.
    Cheirsilp, B., & Torpee, S. (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510–516.CrossRefGoogle Scholar
  4. 4.
    Choi, J. A., Kim, D. Y., Seo, Y. H., & Han, J. I. (2016). Application of Fe (NO 3) 3-based as nitrogen source and coagulant for cultivation and harvesting of Chlorella sorokiniana. Bioresource Technology, 222, 374–379.CrossRefGoogle Scholar
  5. 5.
    Chung, J., Lee, I., & Han, J. I. (2016). Biodiesel production from oleaginous yeasts using livestock wastewater as nutrient source after phosphate struvite recovery. Fuel, 186, 305–310.CrossRefGoogle Scholar
  6. 6.
    Duarte, J. H., Fanka, L. S., & Costa, J. A. V. (2016). Utilization of simulated flue gas containing CO 2, SO 2, NO and ash for Chlorella fusca cultivation. Bioresource Technology, 214, 159–165.CrossRefGoogle Scholar
  7. 7.
    Farooq, W., Lee, Y. C., Ryu, B. G., Kim, B. H., Kim, H. S., Choi, Y. E., & Yang, J. W. (2013). Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresource Technology, 132, 230–238.CrossRefGoogle Scholar
  8. 8.
    Geciova, J., Bury, D., & Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry—a review. International Dairy Journal, 12, 541–553.CrossRefGoogle Scholar
  9. 9.
    Huang, C., Chen, X. F., Xiong, L., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances, 31(2), 129–139.CrossRefGoogle Scholar
  10. 10.
    Isleten-Hosoglu, M., Ayyildiz-Tamis, D., Zengin, G., & Elibol, M. (2013). Enhanced growth and lipid accumulation by a new Ettlia texensis isolate under optimized photoheterotrophic condition. Bioresource Technology, 131, 258–265.CrossRefGoogle Scholar
  11. 11.
    Kim, M., Shin, W., & Sohn, H. (2015). Application of the lees of domestic traditional wine and its useful biological activity. Journal of Life Sciences, 25, 1072–1079.Google Scholar
  12. 12.
    Lee, H. S., Hong, K. H., Kim, J. Y., Kim, D. H., Yoon, C. H., & Kim, S. M. (2009). Blood pressure lowering effect of Korean turbid rice wine (Takju) lees extracts in spontaneously hypertensive rat (SHR). Journal of the Korean Society of Food Culture, 24(3), 338–343.Google Scholar
  13. 13.
    Li, Y. R., Tsai, W. T., Hsu, Y. C., Xie, M. Z., & Chen, J. J. (2014). Comparison of autotrophic and mixotrophic cultivation of green microalgal for biodiesel production. Energy Procedia, 52, 371–376.CrossRefGoogle Scholar
  14. 14.
    Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.CrossRefGoogle Scholar
  15. 15.
    Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11–36.CrossRefGoogle Scholar
  16. 16.
    Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100, 261–268.CrossRefGoogle Scholar
  17. 17.
    Ratledge, C. (1991). Microorganisms for lipids. Engineering in Life Sciences, 11(5), 429–438.Google Scholar
  18. 18.
    Ryu, B. G., Kim, J., Kim, K., Choi, Y. E., Han, J. I., & Yang, J. W. (2013). High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry. Bioresource Technology, 135, 357–364.CrossRefGoogle Scholar
  19. 19.
    Schneider, T., Graeff-Hönninger, S., French, W. T., Hernandez, R., Merkt, N., Claupein, W., Hetrick, M., & Pham, P. (2013). Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy, 61, 34–43.CrossRefGoogle Scholar
  20. 20.
    Seo, G. U., Choi, S. Y., Kim, T. W., Ryu, S. G., Park, J. H., & Lee, S. C. (2013). Functional activities of Makgeolli by-products as cosmetic materials. Journal of the Korean Society of Food Science and Nutrition, 42(4), 505–511.CrossRefGoogle Scholar
  21. 21.
    Seo, Y. H., Lee, I., Jeon, S. H., & Han, J.-I. (2014). Efficient conversion from cheese whey to lipid using Cryptococcus curvatus. Biochemical Engineering Journal, 90, 149–153.CrossRefGoogle Scholar
  22. 22.
    Šoštarič, M., Klinar, D., Bricelj, M., Golob, J., Berovič, M., & Likozar, B. (2012). Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnology, 29(3), 325–331.CrossRefGoogle Scholar
  23. 23.
    Stansell, G. R., Gray, V. M., & Sym, S. D. (2012). Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 24, 791–801.CrossRefGoogle Scholar
  24. 24.
    Sung, M., Seo, Y. H., Han, S., & Han, J. I. (2014). Biodiesel production from yeast Cryptococcus sp. using Jerusalem artichoke. Bioresource Technology, 155, 77–83.CrossRefGoogle Scholar
  25. 25.
    Tanguler, H., & Erten, H. (2008). Utilisation of spent brewer’s yeast for yeast extract production by autolysis: the effect of temperature. Food and Bioproducts Processing, 86, 317–321.CrossRefGoogle Scholar
  26. 26.
    Waters, D. L. E., Henry, R. J., Reinke, R. F., & Fitzgerald, M. A. (2006). Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnology Journal, 4, 115–122.CrossRefGoogle Scholar
  27. 27.
    Wei, A., Zhang, X., Wei, D., Chen, G., Wu, Q., & Yang, S.-T. (2009). Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. Journal of Industrial Microbiology & Biotechnology, 36, 1383.CrossRefGoogle Scholar
  28. 28.
    Xue, F., Gao, B., Zhu, Y., Zhang, X., Feng, W., & Tan, T. (2010). Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresource Technology, 101, 6092–6095.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yeji Kam
    • 1
  • Mina Sung
    • 1
  • Hoon Cho
    • 1
  • Chang-Min Kang
    • 2
  • Jungmin Kim
    • 3
    • 4
  • Jong-In Han
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringKAISTDaejeonRepublic of Korea
  2. 2.Gyeongnam Department of Environmental Toxicology & ChemistryKorea Institute of ToxicologyJinjuRepublic of Korea
  3. 3.Future Environmental Research CenterKorea Institute of ToxicologyJinjuRepublic of Korea
  4. 4.Human and Environmental Toxicology ProgramKorea University of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations