Skip to main content

Pretreatment of Hardwood and Miscanthus with Trametes versicolor for Bioenergy Conversion and Densification Strategies

Abstract

The pretreatment of plant biomass negatively impacts the economics of many bioenergy and bioproduct processes due to the thermochemical requirements for deconstruction of lignocelluluose. An effective strategy to reduce these severity requirements is to pretreat the biomass with white-rot fungi, such as Trametes versicolor, which have the innate ability to deconstruct lignocellulose with a suite of specialized enzymes. In the present study, the effects of 12 weeks of pretreatment with a wild-type strain (52J) and a cellobiose dehydrogenase-deficient strain (m4D) of T. versicolor on hardwood and Miscanthus were explored. Both strains of T. versicolor led to significant decreases of insoluble lignin and significant increases of soluble lignin after acid hydrolysis, which suggests improved lignin extractability. The glucose yields after saccharification using an enzyme cocktail containing chitinase were similar or significantly higher with 52J-treated biomass compared to untreated hardwood and Miscanthus, respectively. The fungal treated biomass, regardless of the strain used, also showed significant increases in energy content and compressive strength of pellets. Overall, the use of T. versicolor as a pretreatment agent for hardwood and Miscanthus could be an environmentally friendly strategy for conversion technologies that require delignification and saccharification, and/or processes that require densification and transport.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., & Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252–267.

    CAS  Article  Google Scholar 

  2. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    CAS  Article  Google Scholar 

  3. Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30, 1447–1457.

    CAS  Article  Google Scholar 

  4. Anderson, W. F., & Akin, D. E. (2008). Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. Journal of Industrial Microbiology & Biotechnology, 35, 355–366.

    CAS  Article  Google Scholar 

  5. Ray, M. J., Leak, D. J., Spanu, P. D., & Murphy, R. J. (2010). Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass and Bioenergy, 34, 1257–1262.

    CAS  Article  Google Scholar 

  6. Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass—an overview. Bioresource Technology, 199, 76–82.

    CAS  Article  Google Scholar 

  7. Canam, T., Town, J., Iroba, K., Tabil, L., Dumonceaux, T.J. (2013) In: A.K. Chandel, S.S. da Silva (Eds.), Pretreatment of lignocellulosic biomass using microorganisms: approaches, advantages, and limitations, sustainable degradation of lignocellulosic biomass—techniques, applications and commercialization, InTech.

  8. Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., Martinez, A. T., Otillar, R., Spatafora, J. W., Yadav, J. S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P. M., de Vries, R. P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Gorecki, P., Heitman, J., Hesse, C., Hori, C., Igarashi, K., Jurgens, J. A., Kallen, N., Kersten, P., Kohler, A., Kues, U., Kumar, T. K. A., Kuo, A., LaButti, K., Larrondo, L. F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D. J., Morgenstern, I., Morin, E., Murat, C., Nagy, L. G., Nolan, M., Ohm, R. A., Patyshakuliyeva, A., Rokas, A., Ruiz-Duenas, F. J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J. C., St John, F., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D. C., Martin, F., Cullen, D., Grigoriev, I. V., & Hibbett, D. S. (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336, 1715–1719.

    CAS  Article  Google Scholar 

  9. Hess, M., Sczyrba, A., Egan, R., Kim, T. W., Chokhawala, H., Schroth, G., Luo, S., Clark, D. S., Chen, F., Zhang, T., Mackie, R. I., Pennacchio, L. A., Tringe, S. G., Visel, A., Woyke, T., Wang, Z., & Rubin, E. M. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331, 463–467.

    CAS  Article  Google Scholar 

  10. Hittinger, C. T. (2012). Evolution. Endless rots most beautiful. Science, 336, 1649–1650.

    CAS  Article  Google Scholar 

  11. MacDonald, J., Doering, M., Canam, T., Gong, Y., Guttman, D. S., Campbell, M. M., & Master, E. R. (2011). Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Applied and Environmental Microbiology, 77, 3211–3218.

    CAS  Article  Google Scholar 

  12. Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., Chapman, J., Chertkov, O., Coutinho, P. M., Cullen, D., Danchin, E. G. J., Grigoriev, I. V., Harris, P., Jackson, M., Kubicek, C. P., Han, C. S., Ho, I., Larrondo, L. F., de Leon, A. L., Magnuson, J. K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A. A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C. L., Yao, J., Barabote, R., Nelson, M. A., Detter, C., Bruce, D., Kuske, C. R., Xie, G., Richardson, P., Rokhsar, D. S., Lucas, S. M., Rubin, E. M., Dunn-Coleman, N., Ward, M., & Brettin, T. S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26, 553–560.

    CAS  Article  Google Scholar 

  13. Gonzales, D., Searcy, E., & Eksioglu, S. (2013). Cost analysis for high-volume and long-haul transportation of densified biomass feedstock. Transportation Research Part A: Policy and Practice, 49, 48–61.

    Article  Google Scholar 

  14. Kaliyan, N., & Morey, V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33, 337–359.

    CAS  Article  Google Scholar 

  15. Biswas, A. K., Rudolfsson, M., Brostrom, M., & Umeki, K. (2014). Effect of pelletizing conditions on combustion behaviour of single wood pellet. Applied Energy, 119, 79–84.

    Article  Google Scholar 

  16. Canam, T., Town, J. R., Tsang, A., McAllister, T. A., & Dumonceaux, T. J. (2011). Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresource Technology, 102, 10020–10027.

    CAS  Article  Google Scholar 

  17. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass, NREL/TP-510-42618.

  18. Robinson, A. R., & Mansfield, S. D. (2009). Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. The Plant Journal, 58, 706–714.

    CAS  Article  Google Scholar 

  19. Pan, X., Xie, D., Kang, K. Y., Yoon, S. L., & Saddler, J. N. (2007). Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Applied Biochemistry and Biotechnology, 137–140, 367–377.

    Google Scholar 

  20. Thapa, S., Johnson, D. B., Liu, P. P., & Canam, T. (2014). Algal biomass as a binding agent for the densification of Miscanthus. Waste and Biomass Valorization, 6, 91–95.

    Article  Google Scholar 

  21. Dumonceaux, T., Bartholomew, K., Valeanu, L., Charles, T., & Archibald, F. (2001). Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme and Microbial Technology, 29, 478–489.

    CAS  Article  Google Scholar 

  22. Casey, E., Mosier, N. S., Adamec, J., Stockdale, Z., Ho, N., & Sedlak, M. (2013). Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnology for Biofuels, 6, 83.

    CAS  Article  Google Scholar 

  23. Ha, S. J., Galazka, J. M., Kim, S. R., Choi, J. H., Yang, X., Seo, J. H., Glass, N. L., Cate, J. H. D., & Jin, Y. S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 108, 504–509.

    CAS  Article  Google Scholar 

  24. Wymelenberg, A. V., Gaskell, J., Mozuch, M., Kersten, P., Sabat, G., Martinez, D., & Cullen, D. (2009). Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Applied and Environmental Microbiology, 75, 4058–4068.

    Article  Google Scholar 

  25. Huntley, S. K., Ellis, D., Gilbert, M., Chapple, C., & Mansfield, S. D. (2003). Significant increases in pulping efficiency in C4H-F5H-transformed poplars: Improved chemical savings and reduced environmental toxins. Journal of Agricultural and Food Chemistry, 51, 6178–6183.

    CAS  Article  Google Scholar 

  26. Nunes, C. A., Lima, C. F., Barbosa, L. C. A., Colodette, J. L., Gouveia, A. F. G., & Silverio, F. O. (2010). Determination of eucalyptus spp lignin S/G ratio: a comparison between methods. Bioresource Technology, 101, 4056–4061.

    CAS  Article  Google Scholar 

  27. Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A. T., & Prausnitz, J. M. (2013). Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology, 135, 23–29.

    CAS  Article  Google Scholar 

  28. Phillips, C. M., Beeson, W. T., Cate, J. H., & Marletta, M. A. (2011). Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chemical Biology, 6, 1399–1406.

    CAS  Article  Google Scholar 

  29. Hammel, K. E., Kapich, A. N., Jensen Jr., K. A., & Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme and Microbial Technology, 30, 445–453.

    CAS  Article  Google Scholar 

  30. Zhao, X., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82, 815–827.

    CAS  Article  Google Scholar 

  31. Jenkins, B. M., Baxter, L. L., Miles Jr., T. R., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54, 17–46.

    CAS  Article  Google Scholar 

  32. Fang, S., Liu, Z., Cao, Y., Liu, D., Yu, M., & Tang, L. (2011). Sprout development, biomass accumulation and fuelwood characteristics from coppiced plantations of Quercus acutissima. Biomass and Bioenergy, 35, 3104–3114.

    Article  Google Scholar 

  33. Burner, D. M., Tew, T. L., Harvey, J. J., & Belesky, D. P. (2009). Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass and Bioenergy, 33, 610–619.

    Article  Google Scholar 

  34. Jeguirim, M., Dorge, S., & Trouve, G. (2010). Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresource Technology, 101, 788–793.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant awarded to T.C. (SU835708) from the People, Prosperity and the Planet (P3) program of the US Environmental Protection Agency, along with internal research grants from Eastern Illinois University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Canam.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalinoski, R.M., Flores, H.D., Thapa, S. et al. Pretreatment of Hardwood and Miscanthus with Trametes versicolor for Bioenergy Conversion and Densification Strategies. Appl Biochem Biotechnol 183, 1401–1413 (2017). https://doi.org/10.1007/s12010-017-2507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2507-3

Keywords

  • Biomass
  • Densification
  • Lignocellulose
  • Pretreatment
  • White-rot fungi