Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., & Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252–267.
CAS
Article
Google Scholar
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.
CAS
Article
Google Scholar
Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances, 30, 1447–1457.
CAS
Article
Google Scholar
Anderson, W. F., & Akin, D. E. (2008). Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. Journal of Industrial Microbiology & Biotechnology, 35, 355–366.
CAS
Article
Google Scholar
Ray, M. J., Leak, D. J., Spanu, P. D., & Murphy, R. J. (2010). Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass and Bioenergy, 34, 1257–1262.
CAS
Article
Google Scholar
Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass—an overview. Bioresource Technology, 199, 76–82.
CAS
Article
Google Scholar
Canam, T., Town, J., Iroba, K., Tabil, L., Dumonceaux, T.J. (2013) In: A.K. Chandel, S.S. da Silva (Eds.), Pretreatment of lignocellulosic biomass using microorganisms: approaches, advantages, and limitations, sustainable degradation of lignocellulosic biomass—techniques, applications and commercialization, InTech.
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R. A., Henrissat, B., Martinez, A. T., Otillar, R., Spatafora, J. W., Yadav, J. S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P. M., de Vries, R. P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Gorecki, P., Heitman, J., Hesse, C., Hori, C., Igarashi, K., Jurgens, J. A., Kallen, N., Kersten, P., Kohler, A., Kues, U., Kumar, T. K. A., Kuo, A., LaButti, K., Larrondo, L. F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D. J., Morgenstern, I., Morin, E., Murat, C., Nagy, L. G., Nolan, M., Ohm, R. A., Patyshakuliyeva, A., Rokas, A., Ruiz-Duenas, F. J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J. C., St John, F., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D. C., Martin, F., Cullen, D., Grigoriev, I. V., & Hibbett, D. S. (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336, 1715–1719.
CAS
Article
Google Scholar
Hess, M., Sczyrba, A., Egan, R., Kim, T. W., Chokhawala, H., Schroth, G., Luo, S., Clark, D. S., Chen, F., Zhang, T., Mackie, R. I., Pennacchio, L. A., Tringe, S. G., Visel, A., Woyke, T., Wang, Z., & Rubin, E. M. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331, 463–467.
CAS
Article
Google Scholar
Hittinger, C. T. (2012). Evolution. Endless rots most beautiful. Science, 336, 1649–1650.
CAS
Article
Google Scholar
MacDonald, J., Doering, M., Canam, T., Gong, Y., Guttman, D. S., Campbell, M. M., & Master, E. R. (2011). Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Applied and Environmental Microbiology, 77, 3211–3218.
CAS
Article
Google Scholar
Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., Chapman, J., Chertkov, O., Coutinho, P. M., Cullen, D., Danchin, E. G. J., Grigoriev, I. V., Harris, P., Jackson, M., Kubicek, C. P., Han, C. S., Ho, I., Larrondo, L. F., de Leon, A. L., Magnuson, J. K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A. A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C. L., Yao, J., Barabote, R., Nelson, M. A., Detter, C., Bruce, D., Kuske, C. R., Xie, G., Richardson, P., Rokhsar, D. S., Lucas, S. M., Rubin, E. M., Dunn-Coleman, N., Ward, M., & Brettin, T. S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26, 553–560.
CAS
Article
Google Scholar
Gonzales, D., Searcy, E., & Eksioglu, S. (2013). Cost analysis for high-volume and long-haul transportation of densified biomass feedstock. Transportation Research Part A: Policy and Practice, 49, 48–61.
Article
Google Scholar
Kaliyan, N., & Morey, V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33, 337–359.
CAS
Article
Google Scholar
Biswas, A. K., Rudolfsson, M., Brostrom, M., & Umeki, K. (2014). Effect of pelletizing conditions on combustion behaviour of single wood pellet. Applied Energy, 119, 79–84.
Article
Google Scholar
Canam, T., Town, J. R., Tsang, A., McAllister, T. A., & Dumonceaux, T. J. (2011). Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresource Technology, 102, 10020–10027.
CAS
Article
Google Scholar
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass, NREL/TP-510-42618.
Robinson, A. R., & Mansfield, S. D. (2009). Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. The Plant Journal, 58, 706–714.
CAS
Article
Google Scholar
Pan, X., Xie, D., Kang, K. Y., Yoon, S. L., & Saddler, J. N. (2007). Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Applied Biochemistry and Biotechnology, 137–140, 367–377.
Google Scholar
Thapa, S., Johnson, D. B., Liu, P. P., & Canam, T. (2014). Algal biomass as a binding agent for the densification of Miscanthus. Waste and Biomass Valorization, 6, 91–95.
Article
Google Scholar
Dumonceaux, T., Bartholomew, K., Valeanu, L., Charles, T., & Archibald, F. (2001). Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme and Microbial Technology, 29, 478–489.
CAS
Article
Google Scholar
Casey, E., Mosier, N. S., Adamec, J., Stockdale, Z., Ho, N., & Sedlak, M. (2013). Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnology for Biofuels, 6, 83.
CAS
Article
Google Scholar
Ha, S. J., Galazka, J. M., Kim, S. R., Choi, J. H., Yang, X., Seo, J. H., Glass, N. L., Cate, J. H. D., & Jin, Y. S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 108, 504–509.
CAS
Article
Google Scholar
Wymelenberg, A. V., Gaskell, J., Mozuch, M., Kersten, P., Sabat, G., Martinez, D., & Cullen, D. (2009). Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Applied and Environmental Microbiology, 75, 4058–4068.
Article
Google Scholar
Huntley, S. K., Ellis, D., Gilbert, M., Chapple, C., & Mansfield, S. D. (2003). Significant increases in pulping efficiency in C4H-F5H-transformed poplars: Improved chemical savings and reduced environmental toxins. Journal of Agricultural and Food Chemistry, 51, 6178–6183.
CAS
Article
Google Scholar
Nunes, C. A., Lima, C. F., Barbosa, L. C. A., Colodette, J. L., Gouveia, A. F. G., & Silverio, F. O. (2010). Determination of eucalyptus spp lignin S/G ratio: a comparison between methods. Bioresource Technology, 101, 4056–4061.
CAS
Article
Google Scholar
Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A. T., & Prausnitz, J. M. (2013). Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology, 135, 23–29.
CAS
Article
Google Scholar
Phillips, C. M., Beeson, W. T., Cate, J. H., & Marletta, M. A. (2011). Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chemical Biology, 6, 1399–1406.
CAS
Article
Google Scholar
Hammel, K. E., Kapich, A. N., Jensen Jr., K. A., & Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme and Microbial Technology, 30, 445–453.
CAS
Article
Google Scholar
Zhao, X., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82, 815–827.
CAS
Article
Google Scholar
Jenkins, B. M., Baxter, L. L., Miles Jr., T. R., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54, 17–46.
CAS
Article
Google Scholar
Fang, S., Liu, Z., Cao, Y., Liu, D., Yu, M., & Tang, L. (2011). Sprout development, biomass accumulation and fuelwood characteristics from coppiced plantations of Quercus acutissima. Biomass and Bioenergy, 35, 3104–3114.
Article
Google Scholar
Burner, D. M., Tew, T. L., Harvey, J. J., & Belesky, D. P. (2009). Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass and Bioenergy, 33, 610–619.
Article
Google Scholar
Jeguirim, M., Dorge, S., & Trouve, G. (2010). Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus. Bioresource Technology, 101, 788–793.
CAS
Article
Google Scholar