Skip to main content
Log in

Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pulcherrimin, a potential biocontrol agent produced by microorganisms, has the promising applications in the agricultural, medical, and food areas, and the low yield of pulcherrimin has hindered its applications. In this study, the red pigment produced by Bacillus licheniformis DW2 was identified as pulcherrimin through the spectrometry analysis and genetic manipulation, and the component of the medium used for pulcherrimin production was optimized. Based on our results, the addition of 1.0 g L−1 Tween 80 could improve the yield of pulcherrimin, and glucose and (NH4)2SO4 were served as the optimal carbon and nitrogen sources for pulcherrimin synthesis, respectively. Furthermore, an orthogonal array design was applied for optimization of the medium. Under optimized condition, the maximum yield of pulcherrimin was 331.17 mg L−1, 5.30-fold higher than that of the initial condition, which was the maximum yield reported for pulcherrimin production. Collectively, this study provided a promising strain and a feasible approach to achieve the high-level production of antimicrobial pulcherrimin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ondry, M., et al. (2009). Cyclodipeptide synthases are a family of tRNA-dependent peptide bondforming enzymes. Nature Chemical Biology, 5, 414–420.

    Article  Google Scholar 

  2. Sauguet, L., et al. (2011). Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Nucleic Acids Research, 39, 4475–4489.

    Article  CAS  Google Scholar 

  3. Kluyver, A. J., van der Walt, J. P., & van Triet, A. J. (1953). Pulcherrimin, the pigment of Candida pulcherrima. Proceedings of the National Academy of Sciences, 39, 583–593.

    Article  CAS  Google Scholar 

  4. Turkel, S., & Ener, B. (2009). Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Zeitschrift Für Naturforschung C Journal of Biosciences, 64, 405–410.

    CAS  Google Scholar 

  5. Kurtzman, C. P., & Droby, S. (2001). Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Systematic and Applied Microbiology, 24, 395–399.

    Article  CAS  Google Scholar 

  6. Sipiczki, M. (2006). Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Applied and Environmental Microbiology, 72, 6716–6724.

    Article  CAS  Google Scholar 

  7. Cryle, M. J., Bell, S. G., & Schlichting, I. (2010). Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochemistry, 49, 7282–7296.

    Article  CAS  Google Scholar 

  8. Kántor, A., Hutková, J., Petrová, J., Hleba, L., & Kačániová, M. (2015). Antimicrobial activity of pulcherrimin pigment produced by Metschnikowia pulcherrima against various yeast species. Journal of Microbiology Biotechnology & Food Sciences, 5, 282–285.

    Article  Google Scholar 

  9. Randazzo, P., Aubert-Frambourg, A., Guillot, A., & Auger, S. (2016). The MarR-like protein PchR (YvmB) regulates expression of genes involved in pulcherriminic acid biosynthesis and in the initiation of sporulation in Bacillus subtilis. BMC Microbiology, 16, 190.

    Article  Google Scholar 

  10. Manivasagan, P., Sivasankar, P., Venkatesan, J., Sivakumar, K., & Kim, S. K. (2014). Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess and Biosystems Engineering, 37, 783–797.

    Article  CAS  Google Scholar 

  11. Gao, W., Kim, Y. J., Chung, C. H., Li, J., & Lee, J. W. (2010). Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method. Biotechnology and Bioprocess Engineering, 15, 837–845.

    Article  CAS  Google Scholar 

  12. Seo, H. P., Son, C. W., Chung, C. H., Jung, D. I., Kim, S. K., Gross, R. A., & Lee, J. W. (2004). Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresource Technology, 95, 293–299.

    Article  CAS  Google Scholar 

  13. Kim, J. H., Choi, S. K., Park, Y. S., Yun, C. W., Dai Cho, W., Chee, K. M., & Chang, H. I. (2006). Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1. Journal of Microbiology and Biotechnology, 16, 438–442.

    CAS  Google Scholar 

  14. Qiu, Y., Xiao, F., Wei, X., Wen, Z., & Chen, S. (2014). Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. Applied Microbiology and Biotechnology, 98, 8895–8903.

    Article  CAS  Google Scholar 

  15. Yu, X., Wang, Y., Wei, G., & Dong, Y. (2012). Media optimization for elevated molecular weight and mass production of pigment-free pullulan. Carbohydrate Polymers, 89, 928–934.

    Article  CAS  Google Scholar 

  16. Cook, A. H., & Slater, C. A. (1954). Metabolism of “wild” yeasts I. The chemical nature of pulcherrimin. Journal of the Institute of Brewing, 60, 213–217.

    Article  CAS  Google Scholar 

  17. Canale-Parola, E. (1963). A red pigment produced by aerobic sporeforming bacteria. Archives of Microbiology, 46, 414–427.

    CAS  Google Scholar 

  18. Sisti, M., & Savini, V. (2014). Antifungal properties of the human Metschnikowia strain IHEM 25107. Folia Microbiologica (Praha), 59, 263–266.

    Article  CAS  Google Scholar 

  19. Tang, M. R., Sternberg, D., Behr, R. K., Sloma, A., & Berka, R. M. (2006). Use of transcriptional profiling & bioinformatics to solve production problems: eliminating red pigment production in a Bacillus subtilis strain producing hyaluronic acid. Industrial Biotechnology, 2, 66–74.

    Article  CAS  Google Scholar 

  20. Kupfer, D. G., Uffen, R. L., & Canale-Parola, E. (1967). The role of iron and molecular oxygen in pulcherrimin synthesis by bacteria. Archiv für Mikrobiologie, 56, 9–21.

    Article  CAS  Google Scholar 

  21. Qiu, Y., Zhang, J., Li, L., Wen, Z., Nomura, C. T., Wu, S., & Chen, S. (2016). Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnology for Biofuels, 9, 117.

    Article  Google Scholar 

  22. Wei, X., Ji, Z., & Chen, S. (2010). Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid. Applied Biochemistry and Biotechnology, 160, 1332–1340.

    Article  CAS  Google Scholar 

  23. Xue, G. P., Johnson, J. S., & Dalrymple, B. P. (1999). High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. Journal of Microbiological Methods, 34, 183–191.

    Article  CAS  Google Scholar 

  24. Silva, W. O. B., Mitidieri, S., Schrank, A., & Vainstein, M. H. (2005). Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochemistry, 40, 321–326.

    Article  Google Scholar 

  25. Guo, J., Rao, Z., Yang, T., Man, Z., Xu, M., & Zhang, X. (2014). High-level production of melanin by a novel isolate of Streptomyces kathirae. FEMS Microbiology Letters, 357, 85–91.

    Article  CAS  Google Scholar 

  26. Wang, H., Qiao, Y., Chai, B., Qiu, C., & Chen, X. (2015). Identification and molecular characterization of the homogentisate pathway responsible for pyomelanin production, the major melanin constituents in Aeromonas media WS. PloS One, 10, e0120923.

    Article  Google Scholar 

  27. Arnesen, S., Eriksen, S. H., Ørgen Olsen, J., & Jensen, B. (1998). Increased production of α-amylase from Thermomyces lanuginosus by the addition of Tween 80. Enzyme and Microbial Technology, 23, 249–252.

    Article  CAS  Google Scholar 

  28. Tu, G., Wang, Y., Ji, Y., & Zou, X. (2015). The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World Journal of Microbiology and Biotechnology, 31, 219–226.

    Article  CAS  Google Scholar 

  29. Liu, Y., Zheng, Z. M., Qiu, H. W., Zhao, G. H., Wang, P., Liu, H., & Tan, M. (2014). Surfactant supplementation to enhance the production of vitamin K2 metabolites in shake flask cultures using Escherichia sp. mutant FM3-1709. Food Technology and Biotechnology, 52, 269.

    CAS  Google Scholar 

  30. Cai, D., Liu, M., Wei, X., Li, X., Wang, Q., Nomura, C. T., & Chen, S. (2016). Use of Bacillus amyloliquefaciens HZ-12 for high-level production of the blood glucose lowering compound, 1-deoxynojirimycin (DNJ), and nutraceutical enriched soybeans via fermentation. Applied Biochemistry and Biotechnology, 1–15.

  31. Brückner, R., & Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 209, 141–148.

    Article  Google Scholar 

  32. Fujita, Y. (2009). Carbon catabolite control of the metabolic network in Bacillus subtilis. Bioscience, Biotechnology, and Biochemistry, 73, 245–259.

    Article  CAS  Google Scholar 

  33. Ruffing, A. M., & Chen, R. R. (2011). Citrate stimulates oligosaccharide synthesis in metabolically engineered Agrobacterium sp. Applied Biochemistry and Biotechnology, 164, 851–866.

    Article  CAS  Google Scholar 

  34. Chen, Y., et al. (2010). The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5′-monophosphate by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 86, 75–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Science and Technology Pillar Program during the Twelfth Five-year Plan Period (2013AA102801-52), and the Science and Technology Program of Wuhan (20160201010086).

Author information

Authors and Affiliations

Authors

Contributions

D. Wang and S. Chen designed and supervised the study. X. Li performed the experiments. X. Li, D. Wang, D. Cai, Y. Zhan, Q. Wang, and S. Chen analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shouwen Chen.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

All primers used in this study and the result about effects of K2HPO4·3H2O, MgSO4·7H2O, CaCl2·H2O, FeCl3·6H2O, and MnSO4·H2O on pulcherrimin production were listed as the supplementary materials. This information is available free of charge via https://link.springer.com/journal/12010.

ESM 1

(DOCX 2112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, D., Cai, D. et al. Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183, 1323–1335 (2017). https://doi.org/10.1007/s12010-017-2500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2500-x

Keywords

Navigation