Skip to main content

Effect of Light/Dark Regimens on Hydrogen Production by Tetraselmis subcordiformis Coupled with an Alkaline Fuel Cell System

Abstract

To improve the photoproduction of hydrogen (H2) by a green algae-based system, the effect of light/dark regimens on H2 photoproduction regulated by carbonyl cyanide m-chlorophenylhydrazone (CCCP) was investigated. A fuel cell was integrated into a photobioreactor to allow online monitoring of the H2 evolution rate and decrease potential H2 feedback inhibition by consuming the generated H2 in situ. During the first 15 h of H2 evolution, the system was subjected to dark treatment after initial light illumination (L/D = 6/9 h, 9/6 h, and 12/3 h). After the dark period, all systems were again exposed to light illumination until H2 evolution stopped. Two peaks were observed in the H2 evolution rate under all three light/dark regimens. Additionally, a high H2 yield of 126 ± 10 mL L−1 was achieved using a light/dark regimen of L 9 h/D 6 h/L until H2 production ceased, which was 1.6 times higher than that obtained under continuous illumination. H2 production was accompanied by some physiological and morphological changes in the cells. The results indicated that light/dark regimens improved the duration and yield of H2 photoproduction by the CCCP-regulated process of Tetraselmis subcordiformis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Eroglu, E., & Melis, A. (2016). Microalgal hydrogen production research. International Journal of Hydrogen Energy, 41, 12772–12798.

    CAS  Article  Google Scholar 

  2. Oncel, S. S. (2013). Microalgae for a macroenergy world. Renewable and Sustainable Energy Reviews., 26, 241–264.

    Article  Google Scholar 

  3. Rashid, N., Rehman, M. S. U., Memon, S., Rahman, Z. U., Lee, K., & Han, J. I. (2013). Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22, 571–579.

    CAS  Article  Google Scholar 

  4. Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., & Chang, J. S. (2012). Biohydrogen production: current perspectives and the way forward. International Journal of Hydrogen Energy, 37, 15616–15631.

    CAS  Article  Google Scholar 

  5. Singh, L., & Wahid, Z. A. (2015). Methods for enhancing bio-hydrogen production from biological process: a review. Journal of Industrial and Engineering Chemistry, 21, 70–80.

    CAS  Article  Google Scholar 

  6. Benemann, J. R. (2000). Hydrogen production by microalgae. Journal of Applied Phycology, 12, 291–300.

    CAS  Article  Google Scholar 

  7. Akano, T., Miura, Y., Fukatsu, K., Miyasaka, H., Ikuta, Y., Matsumoto, H., Hamasaki, A., Shioji, N., Mizoguchi, T., Yagi, K., & Maeda, I. (1996). Hydrogen production by photosynthetic microorganisms. Applied Biochemistry and Biotechnology, 57–58, 677–688.

    Article  Google Scholar 

  8. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy, 29, 173–185.

    CAS  Article  Google Scholar 

  9. Redwood, M. D., Beedle, M. P., & Macaskie, L. E. (2009). Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Reviews in Environmental Science Biotechnology, 8, 149–185.

    CAS  Article  Google Scholar 

  10. Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., & Daud, W. R. W. (2016). Overview biohydrogen technologies and application in fuel cell technology. Renewable and Sustainable Energy Reviews, 66, 137–162.

    CAS  Article  Google Scholar 

  11. Oncel, S. S., & Vardar, S. F. (2011). Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii. Journal of Power Sources, 196, 46–53.

    CAS  Article  Google Scholar 

  12. Aziz, M. (2016). Integrated hydrogen production and power generation from microalgae. International Journal of Hydrogen Energy, 41, 104–112.

    CAS  Article  Google Scholar 

  13. Guan, Y. F., Deng, M. C., Yu, X. J., & Zhang, W. (2004). Significant enhancement of photobiological hydrogen evolution by carbonylcyanide m-chlorophenyl hydrazone in the marine green alga Platymonas subcordiformis. Biotechnology Letters, 26, 1031–1035.

    CAS  Article  Google Scholar 

  14. Guan, Y. F., Deng, M. C., Yu, X. J., & Zhang, W. (2004). Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochemical Engineering Journal, 19, 69–73.

    CAS  Article  Google Scholar 

  15. Ran, C. Q., Yu, X. J., Jin, M. F., & Zhang, W. (2006). Role of carbonyl cyanide m-chlorophenylhydrazone in enhancing photobiological hydrogen production by marine green alga Platymonas subcordiformis. Biotechnology Progress, 22, 438–443.

    CAS  Article  Google Scholar 

  16. Guo, Z., Chen, Z. A., Zhang, W., Yu, X. J., & Jin, M. F. (2008). Improved hydrogen photoproduction regulated by carbonylcyanide m-chlorophenylhrazone from marine green alga Platymonas subcordiformis growing under CO2-supplemented air bubble column bioreactor. Biotechnology Letters, 30, 877–883.

    CAS  Article  Google Scholar 

  17. Guo, Z., Li, Y., & Guo, H. Y. (2016). Characterization of H2 photoproduction by marine green alga Tetraselmis subcordiformis integrated with an alkaline fuel cell. Biotechnology Letters, 38, 435–440.

    CAS  Article  Google Scholar 

  18. Schreiber, U., Hormann, H., Neubauer, C., & Klughammer, C. (1995). Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Australian Journal of Plant Physiology, 22, 209–220.

    CAS  Article  Google Scholar 

  19. Kosourov, S., Seibert, M., & Ghirardi, M. L. (2003). Effects of extracellular pH on the metabolic pathways in sulfur-deprived H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiology, 44, 146–155.

    CAS  Article  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Klein, U., & Betz, A. (1978). Fermentative metabolism of hydrogen-evolving Chlamydomonas moewusii. Plant Physiology, 61, 953–956.

    CAS  Article  Google Scholar 

  22. Chader, S., Mahmah, B., Chetehouna, K., Amrouche, F., & Abdeladim, K. (2011). Biohydrogen production using green microalgae as an approach to operate a small proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 36, 4089–4093.

    CAS  Article  Google Scholar 

  23. Oncel, S. S., & Vardar, S. F. (2011). Effect of light intensity and the light:dark cycles on the long term hydrogen produced of Chlamydomonas reinhardtii by batch cultures. Biomass and Bioenergy, 35, 1066–1074.

    CAS  Article  Google Scholar 

  24. Hemschemeier, A., & Happe, T. (2005). The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochemical Society Transactions, 33, 39–41.

    CAS  Article  Google Scholar 

  25. Antal, T., Krendeleva, T., Laurinavichene, T., Makarova, V., Tsygankov, A., Seibert, M., & Rubin, A. (2001). The relationship between the photosystem 2 activity and hydrogen production in sulfur deprived Chlamydomonas reinhardtii cells. Doklady Biochemistry and Biophysics, 381, 371–374.

    CAS  Article  Google Scholar 

  26. Zhang, L., Happe, T., & Melis, A. (2002). Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta, 214, 552–561.

    CAS  Article  Google Scholar 

  27. Chochois, V., Constans, L., Dauvillee, D., Beyly, A., Soliveres, M., Ball, S., Peltier, G., & Cournac, L. (2010). Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 35, 10731–10740.

    CAS  Article  Google Scholar 

  28. Kosourov, S., Patrusheva, E., Ghirardi, M. L., Seibert, M., & Tsygankov, A. (2007). A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth condition. Journal of Biotechnology, 128, 776–787.

    CAS  Article  Google Scholar 

  29. Dubini, A., & Ghirardi, M. L. (2015). Engineering photosynthetic organisms for the production of biohydrogen. Photosynthesis Research, 123, 241–253.

    CAS  Article  Google Scholar 

  30. Ji, C. F., Cao, X. P., Liu, H. W., Qu, J. G., Yao, C. H., Zou, H. F., & Xue, S. (2015). Investigating cellular responses during photohydrogen production by the marine microalga Tetraselmis subcordiformis by quantitative proteome analysis. Applied Biochemistry and Biotechnology, 177, 649–661.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the National Natural Science Foundation of China (No. 50908028), the General Scientific Research Project of Liaoning Provincial Department of Education (No. L2015091), and the Natural Science Foundation of Liaoning Province (No. 2015A030313217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Li, Y. & Guo, H. Effect of Light/Dark Regimens on Hydrogen Production by Tetraselmis subcordiformis Coupled with an Alkaline Fuel Cell System. Appl Biochem Biotechnol 183, 1295–1303 (2017). https://doi.org/10.1007/s12010-017-2498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2498-0

Keywords

  • Alkaline fuel cell (AFC)
  • Carbonyl cyanide m-chlorophenylhydrazone (CCCP)
  • Hydrogen production
  • Light/dark regimens
  • Tetraselmis subcordiformis