Skip to main content
Log in

Metal-Chelate Affinity Precipitation with Thermo-Responsive Polymer for Purification of ε-Poly-l-Lysine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

ε-Poly-l-lysine (ε-PL) is a natural preservative for food processing industry. A thermo-responsive polymer, attached with Cu2+ or Ni2+, was prepared for metal-chelate affinity precipitation for purification of ε-PL. The low critical solution temperatures (LCSTs) of these polymers were close to the room temperature (31.0–35.0 °C). The optimal adsorption conditions were as follows: pH 4.0, 0 mol/L NaCl, ligand density 75.00 μmol/g, and 120 min. The ligand Cu2+ showed a stronger affinity interaction with ε-PL and the highest adsorption amount reached 251.93 mg/g polymer. The elution recovery of ε-PL could be 98.42% with 0.50 mol/L imidazole (pH = 8.0) as the eluent. The method could purify ε-PL from fermentation broth and the final product was proved as electrophoretic pure by SDS-PAGE. Moreover, these affinity polymers could be recycled after the purification of ε-PL and the recoveries were above 95.00%.

Scheme for affinity precipitation of ε-PL

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shima, S., & Sakai, H. (1977). Polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 41, 1807–1809.

    CAS  Google Scholar 

  2. Shima, S., & Sakai, H. (1981). Poly-l-lysine produced by Streptomyces. Part III. Chemical studies. Agricultural and Biological Chemistry, 45, 2503–2508.

    CAS  Google Scholar 

  3. Pandey, A. K., & Kumar, A. (2014). Improved microbial biosynthesis strategies and multifarious applications of the natural biopolymer epsilon-poly-L-lysine. Process Biochemistry, 49, 496–505.

    Article  CAS  Google Scholar 

  4. Chang, S. S., Lu, W. Y., Park, S. H., & Kang, D. H. (2010). Control of foodborne pathogens on ready-to-eat roast beef slurry by epsilon-polylysine. International Journal of Food Microbiology, 141, 236–241.

    Article  CAS  Google Scholar 

  5. Shih, I. L., Shen, M. H., & Van, Y. T. (2006). Microbial synthesis of poly(epsilon-lysine) and its various applications. Bioresource Technology, 97, 1148–1159.

    Article  CAS  Google Scholar 

  6. Yoshida, T., & Nagasawa, T. (2003). Epsilon-Poly-L-lysine: microbial production, biodegradation and application potential. Applied Microbiology and Biotechnology, 62, 21–26.

    Article  CAS  Google Scholar 

  7. Zhu, M., Zhang, Z., Liu, Y., Wang, F., Xia, L., Xia, J., & Guo, H. (2016). Optimization of process parameters for ε-Polylysine production by response surface methods. Int J Polymer Sci, 2016, 1–11.

    Article  CAS  Google Scholar 

  8. Zhen, B., Chen, X. S., Han, D., & Mao, Z. G. (2015). An alternative method for the decoloration of epsilon-poly-L-lysine eluate by macroporous resin in the separation and purification of epsilon-poly-L-lysine from fermentation broth. Food and Bioproducts Processing, 95, 332–338.

    Article  CAS  Google Scholar 

  9. Jia, S., Fan, B., Dai, Y., Wang, G., Peng, P., & Jia, Y. (2010). Fractionation and characterization of ɛ-poly-l-lysine from Streptomyces albulus CGMCC 1986. Food Science and Biotechnology, 19, 361–366.

    Article  CAS  Google Scholar 

  10. Lee, H., Oyama, K., Hiraki, J., Hatakeyama, M., Kurokawa, Y., & Morita, H. (1991). Microbial production and conformation of poly (ε-L-lysine). Chemistry Express, 6, 683–686.

    CAS  Google Scholar 

  11. Chen, X. S., Gao, Y., Zhen, B., Han, D., Zhang, J. H., & Mao, Z. G. (2016). Separation and purification of epsilon-poly-L-lysine from fermentation broth. Process Biochemistry, 51, 134–141.

    Article  CAS  Google Scholar 

  12. Ayyar, B. V., Arora, S., Murphy, C., & O'Kennedy, R. (2012). Affinity chromatography as a tool for antibody purification. Methods, 56, 116–129.

    Article  CAS  Google Scholar 

  13. Landry, K. S., & Levin, R. E. (2014). Development of a novel affinity membrane purification system for deoxyribonuclease. Applied Biochemistry and Biotechnology, 172, 1964–1969.

    Article  CAS  Google Scholar 

  14. Arnold, L., & Chen, R. (2014). Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation. Biotechnology and Bioengineering, 111, 413–417.

    Article  CAS  Google Scholar 

  15. Mattiasson, B., Kumar, A., Ivanov, A. E., & Galaev, I. Y. (2007). Metal-chelate affinity precipitation of proteins using responsive polymers. Nature Protocols, 2, 213–220.

    Article  CAS  Google Scholar 

  16. Shukla, S. C., Singh, A., Pandey, A. K., & Mishra, A. (2012). Review on production and medical applications of epsilon-polylysine. Biochemical Engineering Journal, 65, 70–81.

    Article  CAS  Google Scholar 

  17. Ding, Z., Kang, L., & Cao, X. (2014). Application of docking methods for metal chelate affinity precipitation of endo-glucanase using pH-response polymer. Colloids and Surfaces. B, Biointerfaces, 113, 412–420.

    Article  CAS  Google Scholar 

  18. Ding, Z., Li, S., & Cao, X. (2015). Microbial transglutaminase separation by pH-responsive affinity precipitation with Crocein Orange G as the ligand. Applied Biochemistry and Biotechnology, 177, 253–266.

    Article  CAS  Google Scholar 

  19. Ding, Z., Zheng, K., & Cao, X. (2014). Lipase purification by affinity precipitation with a thermo-responsive polymer immobilized Cibacron Blue F3GA ligand. Biotechnol Bioproc E, 19, 892–899.

    Article  CAS  Google Scholar 

  20. Liu, S., Zhu, J., Jiang, T., Zhong, Y., Tie, Y., Wu, Y., Zheng, X., Jin, Y., & Fu, H. (2015). Identification of lncRNA MEG3 binding protein using MS2-tagged RNA affinity purification and mass spectrometry. Applied Biochemistry and Biotechnology, 176, 1834–1845.

    Article  CAS  Google Scholar 

  21. Ding, Z. Y., & Cao, X. J. (2013). Affinity precipitation of cellulase using pH-response polymer with Cibacron Blue F3GA. Separation and Purification Technology, 102, 136–141.

    Article  CAS  Google Scholar 

  22. Cobo, I., Li, M., Sumerlin, B. S., & Perrier, S. (2015). Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Materials, 14, 143–159.

    Article  CAS  Google Scholar 

  23. Shirbin, S. J., Lam, S. J., Chan, N. J. A., Ozmen, M. M., Fu, Q., O’Brien-Simpson, N., Reynolds, E. C., & Qiao, G. G. (2016). Polypeptide-based macroporous cryogels with inherent antimicrobial properties: the importance of a macroporous structure. ACS Macro Letters, 5, 552–557.

    Article  CAS  Google Scholar 

  24. Li, S., Ding, Z., & Cao, X. (2016). Separation of transglutaminase by thermo-responsive affinity precipitation using l-thyroxin as ligand. Spring, 5, 37.

    Article  Google Scholar 

  25. Ding, Z., Kang, L., Liu, J., Zhang, X., & Cao, X. (2016). Preparation of pH-responsive metal chelate affinity polymer for adsorption and desorption of insulin. Journal of Chemical Technology & Biotechnology.

  26. Fassina, G., Verdoliva, A., Odierna, M. R., Ruvo, M., & Cassini, G. (1996). Protein A mimetic peptide ligand for affinity purification of antibodies. Journal of Molecular Recognition, 9, 564–569.

    Article  CAS  Google Scholar 

  27. Pavan, G. L., Bresolin, I. T. L., Borsoi-Ribeiro, M., Vijayalakshmi, M., & Bueno, S. M. A. (2014). The effect of NaCl on the adsorption of human IgG onto CM-Asp–PEVA hollow fiber membrane-immobilized nickel and cobalt metal ions. Adsorption, 20, 677–688.

    Article  CAS  Google Scholar 

  28. Comert, S. C., & Odabasi, M. (2014). Investigation of lysozyme adsorption performance of Cu(2+)-attached PHEMA beads embedded cryogel membranes. Materials science & engineering. C, Materials for biological applications, 34, 1–8.

    Article  CAS  Google Scholar 

  29. Kumar, A., Khalil, A. A. M., Galaev, I. Y., & Mattiasson, B. (2003). Metal chelate affinity precipitation: purification of (His)6-tagged lactate dehydrogenase using poly(vinylimidazole-co-N-isopropylacrylamide) copolymers. Enzyme and Microbial Technology, 33, 113–117.

    Article  CAS  Google Scholar 

  30. Spriestersbach, A., Kubicek, J., Schäfer, F., Block, H., & Maertens, B. (2015). Chapter one-purification of His-tagged proteins. Methods in Enzymology, 559, 1–15.

    Article  CAS  Google Scholar 

  31. Han, R. Z., Xu, G. C., Dong, J. J., & Ni, Y. (2016). Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Applied Microbiology and Biotechnology, 100, 4747–4760.

    Article  CAS  Google Scholar 

  32. Xu, Z., Cao, C., Sun, Z., Li, S., Xu, Z., Feng, X., & Xu, H. (2015). Construction of a genetic system for Streptomyces albulus PD-1 and improving poly(epsilon-L-lysine) production through expression of Vitreoscilla hemoglobin. Journal of Microbiology and Biotechnology, 25, 1819–1826.

    Article  CAS  Google Scholar 

  33. Ding, Z., & Cao, X. (2013). Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand. BMC Biotechnology, 13, 109.

    Article  Google Scholar 

  34. Brasili, D., Watly, J., Simonovsky, E., Guerrini, R., Barbosa, N. A., Wieczorek, R., Remelli, M., Kozlowski, H., & Miller, Y. (2016). The unusual metal ion binding ability of histidyl tags and their mutated derivatives. Dalton Transactions, 45, 5629–5639.

    Article  CAS  Google Scholar 

  35. Wu, Z. S., Cui, Z. C., Cheng, H., Fan, C., Melcher, K., Jiang, Y., Zhang, C. H., Jiang, H. L., Cong, Y., Liu, Q., & Xu, H. E. (2015). High yield and efficient expression and purification of the human 5-HT3A receptor. Acta Pharmacologica Sinica, 36, 1024–1032.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204) in East China University of Science and Technology. The technical support from instrument platform in State Key Laboratory of Bioreactor Engineering also was highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Cao.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ding, Z., Liu, J. et al. Metal-Chelate Affinity Precipitation with Thermo-Responsive Polymer for Purification of ε-Poly-l-Lysine. Appl Biochem Biotechnol 183, 1254–1264 (2017). https://doi.org/10.1007/s12010-017-2495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2495-3

Keywords

Navigation