Skip to main content
Log in

Ampicillin Mineralization by Denitrifying Process: Kinetic and Metabolic Effects

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The impact of the antibiotic ampicillin (AMP) on the metabolic and kinetics of denitrification process as well as the sludge ability for oxidizing it was evaluated in batch assays. Denitrifying reference assays with acetate-C and nitrate-N (C/N ratio of 1.1) were conducted for establishing the metabolic and kinetic performance of the denitrifying sludge. Assays amended with 10 mg AMP-C L−1 were also performed. In reference assays, acetate and nitrate consumption efficiencies of 100% with a total conversion to HCO3 and N2 were achieved within 1.5 h. When 10 mg AMP-C L−1 was added, total and simultaneous consumption of nitrate-N, acetate-C, and AMP-C was achieved within 12 h. The substrates were completely reduced to N2 and oxidized to HCO3 , respectively. No nitrite-N was registered at the end of culture. AMP caused a reversible inhibitory effect on specific nitrate and acetate consumption and N2 production rates. Complete consumption and mineralization of AMP associated to nitrate reduction to N2 were achieved. This work provides the first evidences on the metabolic and kinetic performance of a denitrifying sludge exposed to AMP. These results might be considered for proposing useful wastewater treatments where β-Lactam antibiotics can be present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prado, N., Ochoa, J., & Amrane, A. (2009). Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor. Bioresource Technology, 15, 3769–3774.

    Article  Google Scholar 

  2. Gozlan, I., Rotstein, A., & Avisar, D. (2013). Amoxicillin-degradation products formed under controlled environmental conditions: identification and determination in the aquatic environment. Chemosphere, 91, 985–992.

    Article  CAS  Google Scholar 

  3. Abellán, M. N., Bayarri, B., Giménez, J., & Costa, J. (2007). Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Applied Catalysis B: Environmental, 74, 233–241.

    Article  Google Scholar 

  4. Murray, K. E., Thomas, S. M., & Bodour, A. A. (2010). Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental Pollution, 158, 3462–3471.

    Article  CAS  Google Scholar 

  5. Fernandez-Fontaina, E., Omil, F., Lema, J. M., & Carballa, M. (2012). Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants. Water Research, 46, 5434–5444.

    Article  CAS  Google Scholar 

  6. Nödler, K., Licha, T., Barbieri, M., & Pérez, S. (2012). Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification. Water Research, 46, 2131–2139.

    Article  Google Scholar 

  7. Wintgens, T., Salehi, F., Hochstrat, R., & Melin, T. (2008). Emerging contaminants and treatment options in water recycling for indirect potable use. Water Science and Technology, 57, 99–107.

    Article  CAS  Google Scholar 

  8. Shah, S. Q. A., Colquhoun, D. J., Nikuli, H. L., & Sorum, H. (2012). Prevalence of antibiotics resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. Environmental Science and Technology, 46, 8672–8679.

    Article  CAS  Google Scholar 

  9. Mitchell, S. M., Ullman, J. L., Teel, A. L., & Watts, R. J. (2014). pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin. Science of the Total Environment, 466-467, 547–555.

    Article  CAS  Google Scholar 

  10. Wise, R. (2002). Antimicrobial resistance: priorities for action. Journal of Antimicrobial Chemotherapy, 49, 585–586.

    Article  CAS  Google Scholar 

  11. Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari, D., & Zuccato, E. (2006). Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science and Technology, 40, 357–363.

    Article  CAS  Google Scholar 

  12. Watkinson, A. J., Murby, E. J., & Constanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Research, 41, 4164–4176.

    Article  CAS  Google Scholar 

  13. Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., & Jin, F. (2008). Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Research, 42, 307–317.

    Article  CAS  Google Scholar 

  14. Meador, J. P., & Rice, C. A. (2001). Impaired growth in the polychaete Armandia brevis exposed to tributyltin in sediment. Marine Environmental Research, 51, 113–129.

    Article  CAS  Google Scholar 

  15. Elmolla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252, 46–52.

    Article  CAS  Google Scholar 

  16. Peña-Calva, A., Olmos-Dichara, A., Viniegra-González, G., Cuervo-López, F. M., & Gómez, J. (2004). Denitrification in presence of benzene, toluene , and m-xylene. Applied Biochemistry and Biotechnology, 119, 195–208.

    Article  Google Scholar 

  17. Meza-Escalante, E. R., Texier, A. C., Cuervo-López, F., Gómez, J., & Cervantes, F. J. (2008). Inhibition of sulfide on the simultaneous removal of nitrate and p-cresol by a denitrifying sludge. Journal of Chemical Technolgy and Biotechnology, 83, 372–377.

    Article  CAS  Google Scholar 

  18. Martínez-Hernández, S., Olguín, E. J., Gómez, J., & Cuervo-López, F. D. M. (2009). Acetate enhances the specific consumption rate of toluene under denitrifying conditions. Archives of Environmental Contamination and Toxicology, 57, 679–687.

    Article  Google Scholar 

  19. Martínez-Gutiérrez, E., González-Márquez, H., Martínez-Hernández, S., Texier, A. C., Cuervo-López, F. M., & Gómez, J. (2012). Effect of phenol and acetate addition on 2-chlorophenol consumption by a denitrifying sludge. Environmental Technology, 33, 1375–1382.

    Article  Google Scholar 

  20. Suarez, S., Lema, J. M., & Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Reserch, 44, 3214–3224.

    Article  CAS  Google Scholar 

  21. Luo, W., Jin, X., Yu, Y., Zhou, S., & Lu, S. (2014). Efficient nitrogen removal via simultaneous nitrification and denitrification in a penicillin wastewater biological treatment plant. Environmental Technology, 35, 2885–2893.

    Article  CAS  Google Scholar 

  22. Costanzo, S. D., Murby, J., & Bates, J. (2005). Ecosystem response to antibiotics entering the aquatic environment. Mar Pollution Bulletin, 51, 218–223.

    Article  CAS  Google Scholar 

  23. Zhang, C., & Bennett, G. N. (2005). Biodegradation of xenobiotics by anaerobic bacteria. Applied Microbiology and Biotechnology, 67, 600–618.

    Article  CAS  Google Scholar 

  24. APHA. (1998). Standard methods for the examination of water and wastewater (20th edn). Washington, DC: American Public Health Association.

    Google Scholar 

  25. Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology Molecular Biology Reviews, 61, 533–616.

    CAS  Google Scholar 

  26. Al-Ahmad, A., Daschner, F. D., & Kümmerer, K. (1999). Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Archives of Environmental Contamination and Toxicology, 37, 158–163.

    Article  CAS  Google Scholar 

  27. González-Blanco, G., Beristain-Cardoso, R., Cuervo-López, F., Cervantes, F. J., & Gómez, J. (2012). Simultaneous oxidation of ammonium and p-cresol linked to nitrite reduction by denitrifying sludge. Bioresource Technnology, 103, 48–55.

    Article  Google Scholar 

  28. Ma, W., Yang, M., Wang, J., Qi, R., & Ren, L. (2002). Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification. Environmental Technology, 23, 685–694.

    Article  CAS  Google Scholar 

  29. Fernández, I., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2009). Operation of an Anammox SBR in the presence of two broad-spectrum antibiotics. Process Biochemistry, 44, 494–498.

    Article  Google Scholar 

  30. Arabski, M., Wasik, S., Dworecki, K., & Kaca, W. (2007). Laser interferometric determination of ampicillin and colistin transfer through cellulose biomembrane in the presence of Proteus vulgaris O25 lipopolysaccharide. Journal of Membrane Science, 299, 268–275.

    Article  CAS  Google Scholar 

  31. Singh, A., & Gavaldá, J. (2008). Ampicillin plus ceftriaxone for high-level aminoglycoside-resistant Enterococcus faecalis endocarditis. Annals of Internal Medicine, 148, 243.

    Article  Google Scholar 

  32. Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22, 90–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Divisional Council of the Universidad Autónoma Metropolitana-Iztapalapa (DCBS) and the Project number 3383 of the Annual Program of Research 2016 of the Universidad Autónoma del Estado de Hidalgo for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flor de María Cuervo-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islas-García, I., Romo-Gómez, C. & de María Cuervo-López, F. Ampicillin Mineralization by Denitrifying Process: Kinetic and Metabolic Effects. Appl Biochem Biotechnol 183, 1049–1061 (2017). https://doi.org/10.1007/s12010-017-2483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2483-7

Keywords

Navigation