Mozumder, M. S. I., Garcia-Gonzalez, L., De Wever, H., & Volcke, E. I. (2016). Model-based process analysis of heterotrophic-autotrophic poly (3-hydroxybutyrate)(PHB) production. Biochemical Engineering Journal, 114, 202–208.
CAS
Article
Google Scholar
Novak, M., Koller, M., Braunegg, M., & Horvat, P. (2015). Mathematical modelling as a tool for optimized PHA production. Chemical and Biochemical Engineering Quarterly, 29, 183–220.
CAS
Article
Google Scholar
Chanprateep, S. (2010). Current trends in biodegradable polyhydroxyalkanoates. Journal of Bioscience and Bioengineering, 110, 621–632.
CAS
Article
Google Scholar
Hafuka, A., Sakaida, K., Satoh, H., Takahashi, M., Watanabe, Y., & Okabe, S. (2011). Effect of feeding regimens on polyhydroxybutyrate production from food wastes by Cupriavidus necator. Bioresource Technology, 102, 3551–3553.
CAS
Article
Google Scholar
Shen, L., Haufe, J., & Patel, M. K. (2009). Product overview and market projection of emerging bio-based plastics PRO-BIP 2009. Report for European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics, 243.
Kaur, G., & Roy, I. (2015). Strategies for large-scale production of polyhydroxyalkanoates. Chemical and Biochemical Engineering Quarterly, 29, 157–172.
CAS
Article
Google Scholar
Gahlawat, G., & Srivastava, A. K. (2013). Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Bioresource Technology, 137, 98–105.
CAS
Article
Google Scholar
Dixit, P., Mehta, A., Gahlawat, G., Prasad, G. S., & Choudhury, A. R. (2015). Understanding the effect of interaction among aeration, agitation and impeller positions on mass transfer during pullulan fermentation by Aureobasidium pullulans. RSC Advances, 5(49), 38984–38994.
CAS
Article
Google Scholar
Khanna, S., & Srivastava, A. K. (2006a). Computer simulated fed-batch cultivation for over production of PHB: a comparison of simultaneous and alternate feeding of carbon and nitrogen. Biochemical Engineering Journal, 27, 197–203.
CAS
Article
Google Scholar
Zinn, M., Weilenmann, H. U., Hany, R., Schmid, M., & Egli, T. (2003). Tailored synthesis of poly ([R]-3-hydroxybutyrate-co-3-hydroxyvalerate)(PHB/HV) in Ralstonia eutropha DSM 428. Acta Biotechnologica, 23, 309–316.
CAS
Article
Google Scholar
Mozumder, M. S. I., De Wever, H., Volcke, E. I., & Garcia-Gonzalez, L. (2014). A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochemistry, 49, 365–373.
CAS
Article
Google Scholar
Khanna, S., & Srivastava, A. K. (2006b). Optimization of nutrient feed concentration and addition time for production of poly (β-hydroxybutyrate). Enzyme Microbial Technology, 39(5), 1145–1151.
CAS
Article
Google Scholar
Patwardhan, P., & Srivastava, A. K. (2008). Fed-batch cultivation of Wautersia eutropha. Bioresource Technology, 99, 1787–1792.
CAS
Article
Google Scholar
Gahlawat, G., Sengupta, B., & Srivastava, A. K. (2012). Enhanced production of poly(3-hydroxybutyrate) in a novel airlift reactor with in situ cell retention using Azohydromonas australica. Journal of Industrial Microbiology Biotechnology, 39, 1377–1384.
CAS
Article
Google Scholar
Gahlawat, G., & Srivastava, A. K. (2012). Estimation of fundamental kinetic parameters of polyhydroxybutyrate fermentation process of Azohydromonas australica using statistical approach of media optimization. Applied Biochemistry and Biotechnology, 168, 1051–1064.
CAS
Article
Google Scholar
Volesky, B., & Votruba, J. (1992). Mathematical model identification. In Modeling and optimization of fermentation process (pp. 38–54). Amsterdam: Elsevier.
Google Scholar
Rosenbrock, H. H. (1960). An automatic method of finding the greatest or the least value of a function. Computer Journal, 3, 175–184.
Article
Google Scholar
Kaur, G., Srivastava, A. K., & Chand, S. (2012). Mathematical modeling approach for concentration and productivity enhancement of 1,3-propanediol using Clostridium diolis. Biochemical Engineering Journal, 68, 34–41.
CAS
Article
Google Scholar
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.
CAS
Article
Google Scholar
Horwitz, W. (1980). Official methods of analysis of the Association of Official Analytical Chemist (thirteenth ed.). Washington, DC: AOAC Methods.
Google Scholar
Riis, V., & Mai, W. (1988). Gas chromatographic determination of polyβ-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. Journal of Chromatography A, 445, 285–289.
CAS
Article
Google Scholar
Grothe, E., Moo-Young, M., & Chisti, Y. (1999). Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzyme and Microbial Technology, 25, 132–141.
CAS
Article
Google Scholar
Grothe, E., & Chisti, Y. (2000). Poly (β-hydroxybutyric acid) thermoplastic production by Alcaligenes latus: behavior of fed-batch cultures. Bioprocess Engineering, 22, 441–449.
CAS
Article
Google Scholar
Loo, C. Y., & Sudesh, K. (2007). Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malaysian Polymer Journal, 2, 31–57.
Google Scholar
Zafar, M., Kumar, S., Kumar, S., & Dhiman, A. K. (2012). Artificial intelligence based modeling and optimization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production process by using Azohydromonas lata MTCC 2311 from cane molasses supplemented with volatile fatty acids: a genetic algorithm paradigm. Bioresource Technology, 104, 631–641.
CAS
Article
Google Scholar
Penloglou, G., Chatzidoukas, C., & Kiparissides, C. (2012). Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation. Biotechnology Advances, 30, 329–337.
CAS
Article
Google Scholar
Chatzidoukas, C., Penloglou, G., & Kiparissides, C. (2013). Development of a structured dynamic model for the production of polyhydroxybutyrate (PHB) in Azohydromonas lata cultures. Biochemical Engineering Journal, 71, 2–80.
Article
Google Scholar
Yu, P. H., Chua, H., Huang, A. L., & Ho, K. P. (1999). Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Applied Biochemistry and Biotechnology, 78, 445–454.
Article
Google Scholar
Cavalheiro, J. M. B. T., de Almeida, M. C. M. D., Grandfils, C., & da Fonseca, M. M. R. (2009). Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochemistry, 44, 509–515.
CAS
Article
Google Scholar
Ienczak, J., Quines, L., Melo, A. D., Brandellero, M., Mendes, C., Schmidell, W., & Aragão, G. (2011). High cell density strategy for poly (3-hydroxybutyrate) production by Cupriavidus necator. Brazilian Journal of Chemical Engineering, 28, 585–596.
CAS
Article
Google Scholar
Sayed, E. I., Azhar, A., Abdelhady, H. M., Abdel Hafez, A. M., & Khodair, T. A. (2009). Batch production of polyhydroxybutyrate (PHB) by Ralstonia eutropha and Alcaligenes latus using bioreactor different culture strategies. Journal of Applied Sciences Research, 5, 556–564.
Google Scholar
Penloglou, G., Roussos, A., Chatzidoukas, C., & Kiparissides, C. (2010). A combined metabolic/polymerization kinetic model on the microbial production of poly (3-hydroxybutyrate). New Biotechnology, 27, 358–367.
CAS
Article
Google Scholar