Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid

Abstract

In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    de Oliveira Moraes, A., Ramirez, N. I., & Pereira Jr., N. (2016). Evaluation of the fermentation potential of pulp mill residue to produce D(−)-lactic acid by separate hydrolysis and fermentation using Lactobacillus coryniformis subsp. torquens. Applied Biochemistry and Biotechnology, 180(8), 1574–1585.

    Article  Google Scholar 

  2. 2.

    Eom, I. Y., Oh, Y. H., Park, S. J., Lee, S. H., & Yu, J. H. (2015). Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis. Bioresource Technology, 185, 143–149.

    CAS  Article  Google Scholar 

  3. 3.

    Kuo, Y. C., Yuan, S. F., Wang, C. A., Huang, Y. J., Guo, G. L., & Hwang, W. S. (2015). Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresource Technology, 198, 651–657.

    CAS  Article  Google Scholar 

  4. 4.

    Wang, Y., Wang, M., Cai, D., Wang, B., Wang, Z., Qin, P., & Tan, T. (2016). Efficient L-lactic acid production from sweet sorghum bagasse by open simultaneous saccharification and fermentation. RSC Advances, 6(42), 35771–35777.

    CAS  Article  Google Scholar 

  5. 5.

    Guo, W., Jia, W., Li, Y., & Chen, S. (2010). Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Applied Biochemistry and Biotechnology, 161(1–8), 124–136.

    CAS  Article  Google Scholar 

  6. 6.

    Wang, J., Wang, Q., Xu, Z., Zhang, W., & Xiang, J. (2015a). Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate. Journal of Microbiology and Biotechnology, 25(1), 26–32.

    Article  Google Scholar 

  7. 7.

    Shi, S., Kang, L., & Lee, Y. Y. (2015). Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology, 175(5), 2741–2754.

    CAS  Article  Google Scholar 

  8. 8.

    Bustos, G., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2005). Production of lactic acid from vine-trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. Journal of the Science of Food and Agriculture, 85(3), 466–472.

    CAS  Article  Google Scholar 

  9. 9.

    Amnuaycheewa, P., Hengaroonprasan, R., Rattanaporn, K., Kirdponpattara, S., Cheenkachorn, K., & Sriariyanun, M. (2016). Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Industrial Crops and Products, 87, 247–254.

    CAS  Article  Google Scholar 

  10. 10.

    Hsu, T. C., Guo, G. L., Chen, W. H., & Hwang, W. S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101(13), 4907–4913.

    CAS  Article  Google Scholar 

  11. 11.

    Kim, S., & Dale, B. E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26(4), 361–375.

    Article  Google Scholar 

  12. 12.

    Sun, R. C., & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrasonics Sonochemistry, 9(2), 85–93.

    CAS  Article  Google Scholar 

  13. 13.

    Hatfield, R. D., Wilson, J. R., & Mertens, D. R. (1999). Composition of cell walls isolated from cell types of grain sorghum stems. Journal of the Science of Food and Agriculture, 79(6), 891–899.

    CAS  Article  Google Scholar 

  14. 14.

    Dhamole, P. B., Demanna, D., & Desai, S. A. (2014). Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system. Applied Biochemistry and Biotechnology, 174(2), 564–573.

    CAS  Article  Google Scholar 

  15. 15.

    Uraji, M., Kimura, M., Inoue, Y., Kawakami, K., Kumagai, Y., Harazono, K., & Hatanaka, T. (2013). Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Applied Biochemistry and Biotechnology, 171(5), 1085–1093.

    CAS  Article  Google Scholar 

  16. 16.

    Jerez, M., Touriño, S., Sineiro, J., Torres, J. L., & Núñez, M. J. (2007). Procyanidins from pine bark: relationships between structure, composition and antiradical activity. Food Chemistry, 104(2), 518–527.

    CAS  Article  Google Scholar 

  17. 17.

    Guangcheng, Z., Yunlu, L., & Yazaki, Y. (1991). Extractives yields, Stiasny values and polyflavanoid contents in barks from six Acacia species in Australia. Australian Forestry, 54(3), 154–156.

    Article  Google Scholar 

  18. 18.

    Bianchi, S., Kroslakova, I., Janzon, R., Mayer, I., Saake, B., & Pichelin, F. (2015). Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species. Phytochemistry, 120, 53–61.

    CAS  Article  Google Scholar 

  19. 19.

    Toquero, C., & Bolado, S. (2014). Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresource Technology, 157, 68–76.

    CAS  Article  Google Scholar 

  20. 20.

    Yu, X., Zeng, J., Zheng, Y., & Chen, S. (2014). Effect of lignocellulose degradation products on microbial biomass and lipid production by the oleaginous yeast Cryptococcus curvatus. Process Biochemistry, 49(3), 457–465.

    CAS  Article  Google Scholar 

  21. 21.

    Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N. O., Jönsson, L. J., Finkelstein, M., & Davison, B. H. (2000). Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 84–86(1–9), 617–632.

    Article  Google Scholar 

  22. 22.

    Adeboye, P. T., Bettiga, M., Aldaeus, F., Larsson, P. T., & Olsson, L. (2015). Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microbial Cell Factories, 14, 149.

    Article  Google Scholar 

  23. 23.

    Wang, D., Ai, P., Yu, L., Tan, Z., & Zhang, Y. (2015b). Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosystems Engineering, 132, 47–55.

    Article  Google Scholar 

  24. 24.

    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., &Templeton, D. (2011). Determination of structural carbohydrates and lignin in biomass national renewable. Technical report NREL/TP-510-42618, National Renewable Energy Laboratory, Golden, CO.

  25. 25.

    Gao, M.-T., Hirata, M., Toorisaka, E., & Hano, T. (2007). Lactic acid production with the supplementation of spent cells and fish wastes for the purpose of reducing impurities in fermentation broth. Biochemical Engineering Journal, 36(3), 276–280.

    CAS  Article  Google Scholar 

  26. 26.

    Singleton, V. L., & Rossi, J. A. (1964). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    Google Scholar 

  27. 27.

    Cáceres-Mella, A., Peña-Neira, Á., Narváez-Bastias, J., Jara-Campos, C., López-Solís, R., & Canals, J. M. (2013). Comparison of analytical methods for measuring proanthocyanidins in wines and their relationship with perceived astringency. International Journal of Food Science and Technology, 48(12), 2588–2594.

    Article  Google Scholar 

  28. 28.

    Zheng, W., Zheng, Q., Xue, Y., Hu, J., & Gao, M. T. (2017). Influence of rice straw polyphenols on cellulase production by Trichoderma reesei. Journal of Bioscience and Bioengineering. doi:10.1016/j.jbiosc.2017.01.009.

  29. 29.

    Abu Zarin, M., Wan, H. Y., Isha, A., & Armania, N. (2016). Antioxidant, antimicrobial and cytotoxic potential of condensed tannins from Leucaena leucocephala hybrid-Rendang. Food Science and Human Wellness, 5(2), 65–75.

    Article  Google Scholar 

  30. 30.

    Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162(7), 1872–1880.

    CAS  Article  Google Scholar 

  31. 31.

    Cao, S., Pu, Y., Studer, M., Wyman, C., & Ragauskas, A. J. (2012). Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Advances, 2(29), 10925.

    CAS  Article  Google Scholar 

  32. 32.

    Cheng, K. K., Zhang, J. A., Ping, W. X., Ge, J. P., Zhou, Y. J., Ling, H. Z., & Xu, J. M. (2008). Sugarcane bagasse mild alkaline/oxidative pretreatment for ethanol production by alkaline recycle process. Applied Biochemistry and Biotechnology, 151(1), 43–50.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Special Fund Agroscientific Research in The Public Interest (No. 201503135-14), by the Scientific Research Projects of Shanghai Science and Technology Committee (No. 14540500600 and No. 16391902000), by Shanghai Municipal Education Commission (No. 14ZZ091), by Tin Ka Ping Education Fund (Mainland Visiting Scholars Exchange Programme 2016/17), and by the National Natural Science Foundation of China (No. 21307093).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Min-Tian Gao.

Electronic supplementary material

Supplementary Table 1

(DOCX 13 kb)

Supplementary Fig. 1

(DOCX 151 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xue, Y., Hu, J. et al. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid. Appl Biochem Biotechnol 183, 685–698 (2017). https://doi.org/10.1007/s12010-017-2457-9

Download citation

Keywords

  • Lactic acid
  • Lactobacillus rhamnosus
  • Phenolic compounds
  • Rice straw