Applied Biochemistry and Biotechnology

, Volume 183, Issue 1, pp 318–331 | Cite as

Characterization of Non-Infectious Virus-Like Particle Surrogates for Viral Clearance Applications

  • Sarah Johnson
  • Kurt A. Brorson
  • Douglas D. Frey
  • Arun K. Dhar
  • David A. Cetlin
Article
  • 163 Downloads

Abstract

Viral clearance is a critical aspect of biopharmaceutical manufacturing process validation. To determine the viral clearance efficacy of downstream chromatography and filtration steps, live viral “spiking” studies are conducted with model mammalian viruses such as minute virus of mice (MVM). However, due to biosafety considerations, spiking studies are costly and typically conducted in specialized facilities. In this work, we introduce the concept of utilizing a non-infectious MVM virus-like particle (MVM-VLP) as an economical surrogate for live MVM during process development and characterization. Through transmission electron microscopy, size exclusion chromatography with multi-angle light scattering, chromatofocusing, and a novel solute surface hydrophobicity assay, we examined and compared the size, surface charge, and hydrophobic properties of MVM and MVM-VLP. The results revealed that MVM and MVM-VLP exhibited nearly identical physicochemical properties, indicating the potential utility of MVM-VLP as an accurate and economical surrogate to live MVM during chromatography and filtration process development and characterization studies.

Keywords

Viral clearance Bioprocess development Quality by Design Minute virus of mice Virus-like particle Chromatofocusing Chromatography Virus filtration 

References

  1. 1.
    The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use: ICH Harmonised Tripartite Guideline Q5A(R1) (1999). Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin.Google Scholar
  2. 2.
    Volkov, G. L., Havryliuk, S. P., Krasnobryzha, I. M., & Havryliuk, O. S. (2016). The protein/peptide direct virus inactivation during chromatographic process: developing approaches. Applied Biochemistry and Biotechnology, 1–17.Google Scholar
  3. 3.
    Darling, A. (2002). Validation of biopharmaceutical purification processes for virus clearance evaluation. Molecular Biotechnology, 21(1), 57–83.CrossRefGoogle Scholar
  4. 4.
    Aranha-Creado, H., & Brandwein, H. (1999). Application of bacteriophages as surrogates for mammalian viruses: a case for use in filter validation based on precedents and current practices in medical and environmental virology. PDA Journal of Pharmaceutical Science and Technology, 53(2), 75–82.Google Scholar
  5. 5.
    Aranha, H., & Forbes, S. (2001). Viral clearance strategies for biopharmaceutical safety. Pharmaceutical technology.Google Scholar
  6. 6.
    Roldão, A., Mellado, M. C., Castilho, L. R., Carrondo, M. J., & Alves, P. M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9(10), 1149–1176.CrossRefGoogle Scholar
  7. 7.
    Hernando, E., Llamas-Saiz, A. L., Foces-Foces, C., McKenna, R., Portman, I., Agbandje-McKenna, M., & Almendral, J. M. (2000). Biochemical and physical characterization of parvovirus minute virus of mice virus-like particles. Virology, 267(2), 299–309.CrossRefGoogle Scholar
  8. 8.
    Lin, Q., Yang, K., He, F., Jiang, J., Li, T., Chen, Z., ... & Xia, N. (2016). Production of influenza virus HA1 harboring native-like epitopes by Pichia pastoris. Applied biochemistry and biotechnology, 179(7), 1275–1289.Google Scholar
  9. 9.
    Buonaguro, F. M., & Buonaguro, L. (2014). Virus-like particles in vaccine development. Virus, 2–4.Google Scholar
  10. 10.
    Gefroh, E., Dehghani, H., McClure, M., Connell-Crowley, L., & Vedantham, G. (2014). Use of MMV as a single worst-case model virus in viral filter validation studies. PDA Journal of Pharmaceutical Science and Technology, 68(3), 297–311.CrossRefGoogle Scholar
  11. 11.
    Liu, H. F., Ma, J., Winter, C., & Bayer, R. (2010). Recovery and purification process development for monoclonal antibody production. MAbs, 2(5), 480–499.CrossRefGoogle Scholar
  12. 12.
    Farrah, S. R., Shah, D. O., & Ingram, L. O. (1981). Effects of chaotropic and antichaotropic agents on elution of poliovirus adsorbed on membrane filters. Proceedings of the National Academy of Sciences, 78, 1229–1232.CrossRefGoogle Scholar
  13. 13.
    Gerba, C. P. (1984). Applied and theoretical aspects of virus adsorption to surfaces. Advances in Applied Microbiology, 30, 133–168.CrossRefGoogle Scholar
  14. 14.
    Johnson, S., Brown, M. Brorson, K and Lute, S. (2016). Developing a high-salt HIC HPLC assay to define relative hydrophobicity of viral particles, 2016 American Chemical Society BIOT Meeting, San Diego, CA.Google Scholar
  15. 15.
    Miesegaes, G., Bailey, M., Willkommen, H., Chen, Q., Roush, D., Blumel, J., & Brorson, K. (2010). Proceedings of the 2009 viral clearance symposium. Developmental Biology (Basel), 133, 3–101.Google Scholar
  16. 16.
    Miesegaes, G., Lute, S., & Brorson, K. (2010). Analysis of viral clearance unit operations for monoclonal antibodies. Biotechnology and Bioengineering, 106, 238–246.Google Scholar
  17. 17.
    Miesegaes, G. R., Lute, S., Strauss, D. M., Read, E. K., Venkiteshwaran, A., Kreuzman, A., Shah, R., Shamlou, P., Chen, D., & Brorson, K. (2012). Monoclonal antibody capture and viral clearance by cation exchange chromatography. Biotechnology and Bioengineering, 109, 2048–2058.CrossRefGoogle Scholar
  18. 18.
    Miesegaes, G. R., Lute, S. C., Read, E. K., & Brorson, K. A. (2014). Viral clearance by flow-through mode ion exchange columns and membrane adsorbers. Biotechnology Progress, 30, 124–131.CrossRefGoogle Scholar
  19. 19.
    Shields, P. A., & Farrah, S. R. (1983). Influence of salts on electrostatic interactions between poliovirus and membrane filters. Applied and Environmental Microbiology, 45, 526–531.Google Scholar
  20. 20.
    Strauss, D. M., Lute, S., Tebaykina, Z., Frey, D. D., Ho, C., Blank, G. S., Brorson, K., Chen, Q., & Yang, B. (2009). Understanding the mechanism of virus removal by Q sepharose fast flow chromatography during the purification of CHO-cell derived biotherapeutics. Biotechnology and Bioengineering, 104, 371–380.CrossRefGoogle Scholar
  21. 21.
    Brorson, K., Lute, S., Haque, M., Martin, J., Sato, T., Moroe, I., Morgan, M., Krishnan, M., Campbell, J., Genest, P., & Parrella, J. (2008). A consensus rating method for small virus-retentive filters. II. Method evaluation. PDA Journal of Pharmaceutical Science and Technology, 62, 334–343.Google Scholar
  22. 22.
    Lute, S., Riordan, W., Pease, L. F., Tsai, D. H., Levy, R., Haque, M., Martin, J., Moroe, I., Sato, T., Morgan, M., & Krishnan, M. (2008). A consensus rating method for small virus-retentive filters. I. Method development. PDA Journal of Pharmaceutical Science and Technology, 62, 318–333.Google Scholar
  23. 23.
    Lute, S., Aranha, H., Tremblay, D., Liang, D., Ackermann, H. W., Chu, B., Moineau, S., & Brorson, K. (2004). Characterization of coliphage PR772 and evaluation of its use for virus filter performance testing. Applied and Environmental Microbiology, 70, 4864–4871.CrossRefGoogle Scholar
  24. 24.
    Lute, S., Bailey, M., Combs, J., Sukumar, M., & Brorson, K. (2007). Phage passage after extended processing in small-virus-retentive filters. Biotechnology and Applied Biochemistry, 47, 141–151.CrossRefGoogle Scholar
  25. 25.
    Brorson, K., Shen, H., Lute, S., Perez, J. S., & Frey, D. D. (2008). Characterization and purification of bacteriophages using chromatofocusing. Journal of Chromatography. A, 1207, 110–121.CrossRefGoogle Scholar
  26. 26.
    Kramarczyk, J. F., Kelley, B. D., & Coffman, J. L. (2008). High-throughput screening of chromatographic separations: II. Hydrophobic interaction. Biotechnology and Bioengineering, 100(4), 707–720.CrossRefGoogle Scholar
  27. 27.
    Queiroz, J. A., Tomaz, C. T., & Cabral, J. M. S. (2001). Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, 87(2), 143–159.CrossRefGoogle Scholar
  28. 28.
    Szepesy, L., & Rippel, G. (1992). Comparison and evaluation of HIC columns of different hydrophobicity. Chromatographia, 34(5–8), 391–397.CrossRefGoogle Scholar
  29. 29.
    Van Regenmortel, M., Fauquet, C., Bishop, D., Carstens, E., Estes, M., & Lemon, S. (2000). Virus taxonomy: seventh report of the international committee on taxonomy of viruses. San Diego: Academic Press.Google Scholar
  30. 30.
    Curtis, S., Lee, K., Blank, G. S., Brorson, K., & Xu, Y. (2003). Generic/matrix evaluation of SV40 clearance by anion exchange chromatography in flow-through mode. Biotechnology and Bioengineering, 84, 179–186.CrossRefGoogle Scholar
  31. 31.
    Shen, H., & Frey, D. D. (2004). Charge regulation in protein ion-exchange chromatography: development and experimental evaluation of a theory based on hydrogen ion Donnan equilibrium. Journal of Chromatography. A, 1034(1–2), 55–68.CrossRefGoogle Scholar
  32. 32.
    Steppert, P., Burgstaller, D., Klausberger, M., Kramberger, P., Tover, A., Berger, E., Nöbauer, K., Razzazi-Fazeli, E., & Jungbauer, A. (2017). Separation of HIV-1 gag virus-like particles from vesicular particles impurities by hydroxyl-functionalized monoliths. Journal of Separation Science. doi:10.1002/jssc.201600765.Google Scholar
  33. 33.
    Segura, M., Puig, M., Monfar, M., & Chillón, M. (2012). Chromatography purification of canine adenovirual vectors. Human Gene Therapy Methods, 23, 182–197.CrossRefGoogle Scholar
  34. 34.
    Brown, M., Johnson, S., Brorson, K., Lute, S., & Roush, D. (2017). A step-wise approach to define binding mechanisms of surrogate viral particles to multi-modal anion exchange resin in a single solute system. Biotechnology and Bioengineering. doi:10.1002/bit.26251.Google Scholar
  35. 35.
    Miesegaes, G. R., Lute, S., Strauss, D. M., Read, E. K., Venkiteshwaran, A., Kreuzman, A., ... & Brorson, K. (2012). Monoclonal antibody capture and viral clearance by cation exchange chromatography. Biotechnology and bioengineering, 109(8), 2048–2058.Google Scholar
  36. 36.
    Domingos, R. F., Baalousha, M. A., Ju-Nam, Y., Reid, M. M., Tufenkji, N., Lead, J. R., ... & Wilkinson, K. J. (2009). Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environmental Science & Technology, 43(19), 7277–7284.Google Scholar
  37. 37.
    Bolton, G., & Blümel, J. (2016). Proceedings of the 2015 viral clearance symposium. Session 5: conference summary: key discussion and outcomes, pending questions, and proposed experiments. PDA Journal of Pharmaceutical Science and Technology, 70, 477–481.CrossRefGoogle Scholar
  38. 38.
    Bolton, G., & Blümel, J. (2016). Session 5: conference summary: key discussion and outcomes, pending questions, and proposed experiments. PDA Journal of Pharmaceutical Science and Technology, 70, 477–481.CrossRefGoogle Scholar
  39. 39.
    Brorson, K. (2016). PDA/FDA virus & TSE safety conference. PDA Journal of Pharmaceutical Science and Technology, 70, 93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sarah Johnson
    • 1
  • Kurt A. Brorson
    • 1
  • Douglas D. Frey
    • 2
  • Arun K. Dhar
    • 3
  • David A. Cetlin
    • 3
  1. 1.DBRRII, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and ResearchFood and Drug AdministrationSilver SpringUSA
  2. 2.Department of Chemical, Biochemical, and Environmental EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA
  3. 3.MockV Solutions, Inc.RockvilleUSA

Personalised recommendations