Abstract
This work evaluated a wild-type Streptomyces clavuligerus strain as a whole-cell lipase (Sc-WCL) producer by submerged fermentation. In an orbital shaker, lipase hydrolytic activity of 3000 U L−1, measured at pH 9.0 and 37 °C by using p-nitrophenyl palmitate as substrate, was achieved after 36 h fermentation using glycerol-free production medium in a baffled Erlenmeyer flask at 28 °C and pH 6.8. Maximum productivity of 52.5 U L−1 h−1 was achieved after 24 h in bioreactor using glycerol-free production medium at pH 6.8 and 28 °C, with agitation at 400 rpm and aeration at 1 vvm. Sc-WCL was shown to be more active at 60 °C and pH 10.7, while higher activity retention was observed at 30–40 °C after 1 h incubation at pH 10. Sc-WCL showed to have potential to be used as biocatalyst in hydrolysis and esterification reactions. In the hydrolysis of p-nitrophenyl palmitate, lyophilized Sc-WCL expressed a hydrolytic activity (330 units g−1 solid, measured at 37 °C and pH 9.0) around 100-fold higher than the ones declared by a supplier of lyophilized powders of mixtures of intracellular lipases from Thermus thermophiles and Thermus flavus (≥3.0 units g−1 solid, measured at 65 °C and pH 8.0). In the synthesis of butyl butyrate in anhydrous medium, 85% ester conversion was achieved at 37 °C after 8 h reaction. Thus, Sc-WCL showed to be a promising biocatalyst because it is cheaper than the isolated and purified lipases.











Similar content being viewed by others
References
Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235–251.
Bastida, A., Sabuquillo, P., Armisen, P., Fernández-Lafuente, R., Huguet, J., & Guisán, J. M. (1998). A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering, 58, 486–493.
Lima, L. N., Oliveira, G. C., Rojas, M. J., Castro, H. F., Da Rós, P. C. M., Mendes, A. A., Giordano, R. L. C., & Tardioli, P. W. (2015). Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. Journal of Industrial Microbiology and Biotechnology, 42, 523–535.
Martinelle, M., Holmquist, M., & Hult, K. (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochimica et Biophysica Acta, 1258, 272–276.
Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal Molecular Catalysis B: Enzymatic, 62, 197–212.
Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42, 6406–6436.
DiCosimo, R., McAuliffe, J., Poulose, A. J., & Bohlmann, G. (2013). Industrial use of immobilized enzymes. Chemical Society Reviews, 42, 6437–6474.
Andualema, B., & Gessesse, A. (2012). Microbial lipases and their industrial applications: review. Biotechnology, 11(3), 100–118.
Patil, K. J., Chopda, M. Z., & Mahajan, R. T. (2011). Lipase biodiversity. Indian Journal of Science and Technology, 4(8), 971–982.
Yadav, G. D., & Rahuman, M. S. M. M. (2002). Cation-exchange resin-catalysed acylations and esterifications in fine chemical and perfumery industries. Organic Process Research & Development, 6(5), 706–713.
Salleh, S., See, Y. S., Serri, N. A., Hena, S., & Tajarudin, H. A. (2016). Synthesis of butyl butyrate in 93% yield by Thermomyces lanuginosus lipase on waste eggshells. Environmental Chemistry Letters, 14, 189–194.
Kiran, G. S., Shanmughapriya, S., Jayalakshmi, J., Selvin, J., Gandhimathi, R., Sivaramakrishnan, S., et al. (2008). Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess and Biosystems Engineering, 31, 483–492.
Abada, E. A. E. (2008). Production and characterization of a mesophilic lipase isolated from Bacillus stearothermophilus AB-1. Pakistan Journal of Biological Sciences, 11, 1100–1106.
Shu, Z. Y., Wu, J. G., Cheng, L. X., Chen, D., Jiang, Y. M., Li, X., & Huang, J. Z. (2012). Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Applied Biochemistry and Biotechnology, 166, 536–548.
Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S., & Sayadi, S. (2011). A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease, 10, 221–228.
Large, K. P., Mirjalili, N., Osborne, M., Peacock, L. M., Zormpaidis, V., Walsh, M., et al. (1999). Lipase activity in Streptomycetes. Enzyme and Microbial Technology, 25, 569–575.
Cho, S. S., Park, D. J., Simkhada, J. R., Hong, J. H., Sohng, J. K., Lee, O. H., & Yoo, J. C. (2012). A neutral lipase applicable in biodiesel production from a newly isolated Streptomyces sp. CS326. Bioprocess and Biosystems Engineering, 35, 227–234.
Mishra, S., & Gupta, N. (2014). Inducers for the enhanced production of lipase by Streptomyces isolated from mangrove ecosystem. International Journal of Current Microbiology and Applied Sciences, 3(11), 370–376.
Kim, H. S., & Park, Y. I. (2007). Lipase activity and tacrolimus production in Streptomyces clavuligerus CKD 1119 mutant strains. Journal of Microbiology and Biotechnology, 17(10), 1638–1644.
Efthimiou, G., Thumser, A. E., & Avignone-Rossa, C. A. (2008). A novel finding that Streptomyces clavuligerus can produce the antibiotic clavulanic acid using olive oil as a sole carbon source. Journal of Applied Microbiology, 105, 2058–2064.
Cadirci, B. H., Yasa, I., & Kocyigit, A. (2016). Streptomyces sp. TEM 33 possess high lipolytic activity in solid state fermentation in comparison with submerged fermentation. Preparative Biochemistry and Biotechnology, 46(1), 23–29.
Ayaz, B., Ugur, A., & Rukiye, B. (2015). Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatalysis and Agricultural Biotechnology, 4, 103–108.
Solarte, C., Yara-Varón, E., Eras, J., Torres, M., Balcells, M., & Canela-Garayoa, R. (2014). Lipase activity and enantioselectivity of whole-cells from a wild-type Aspergillus flavus strain. Journal of Molecular Catalysis B: Enzymatic, 100, 78–83.
Schüürmann, J., Quehl, P., Festel, G., & Jose, J. (2014). Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Applied Microbiology and Biotechnology, 98, 8031–8046.
Adachi, D., Koh, F., Hama, S., Ogino, C., & Kondo, A. (2013). A robust whole-cell biocatalyst that introduces a thermo- and solvent-tolerant lipase into Aspergillus oryzae cells: characterization and application to enzymatic biodiesel production. Enzyme and Microbial Technology, 52, 331–335.
Talukder, M. M. R., Lee, H. Z. S., Low, R. F., Pei-Lyn, L. C., Warzecha, D., & Wu, J. (2013). Potential use of whole-cell lipase from a newly isolated Aspergillus nomius for methanolysis of palm oil to biodiesel. Journal of Molecular Catalysis B: Enzymatic, 89, 108–113.
Hlavsova, K., Zarevucka, M., Wimmer, Z., Mackova, M., & Sovova, H. (2009). Geotrichum candidum 4013: Extracellular lipase versus cell-bound lipase from the single strain. Journal of Molecular Catalysis B: Enzymatic, 61, 188–193.
Wang, D., Xu, Y., & Teng, Y. (2007). Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane. Bioprocess and Biosystems Engineering, 30, 147–155.
Lorenzoni, A. S. G., Graebin, N. G., Martins, A. B., Fernandez-Lafuente, R., Ayub, M. A. Z., & Rodrigues, R. C. (2012). Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from Rhizomucor miehei. Flavour and Fragrance Journal, 27(2), 196–200.
Calvalcante, P. M. M., Da Silva, R. L., De Freitas, J. J. R., De Freitas, J. C. R., & De Freitas Filho, J. R. (2015). Proposta de preparação e caracterização de ésteres: um experimento de análise orgânica na graduação. Educación Química, 26, 319–329.
Matte, C. R., Bordinhão, C., Poppe, J. K., Rodrigues, R. C., Hertz, P. F., & Ayub, M. A. Z. (2016). Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, 127, 67–75.
Kopp, W., Silva, F. A., Lima, L. N., Masunaga, S. H., Tardioli, P. W., Giordano, R. C., Araújo-Moreira, F. M., & Giordano, R. L. C. (2015). Synthesis and characterization of robust magnetic carriers for bioprocess applications. Materials Science and Engineering B, 193, 217–228.
Martins, A. B., Friedrich, J. R. L., Cavalheiro, J. C., Garcia-Galán, C., Barbosa, O., Ayub, M. A. Z., Fernandez-Lafuente, R., & Rodrigues, R. C. (2013). Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene-divinylbenzene beads. Bioresource Technology, 134, 417–422.
Mendes, A. A., Castro, H. F., Andrade, G. S. S., Tardioli, P. W., & Giordano, R. L. C. (2013). Preparation and application of epoxy–chitosan/alginate support in the immobilization of microbial lipases by covalent attachment. Reactive & Functional Polymers, 73, 160–167.
Ortiz, S. C. A., Hokka, C. O., & Badino, A. C. (2007). Utilization of soybean derivates on clavulanic acid production by Streptomyces clavuligerus. Enzyme and Microbial Technology, 40, 1071–1077.
Maranesi, G. L., Baptista-Neto, A., Hokka, C. O., & Badino, A. C. (2005). Utilization of vegetable oil in the production of clavulanic acid by Streptomyces clavuligerus ATCC 27064. World Journal of Microbiology and Biotechnology, 21, 509–514.
Sella, S. R. B. R., Guizelini, B. P., Vandenberghe, L. P. S., Medeiros, A. B. P., & Soccol, C. R. (2009). Lab-scale production of Bacillus atrophaeus’ spores by solid state fermentation in different types of bioreactors. Brazilian Archives of Biology and Technology, 52, 159–170.
Siqueira, P. F., Karp, S. G., Carvalho, J. C., Sturm, W., Rodríguez-León, J. A., Tholozan, J. L., et al. (2008). Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresource Technology, 99, 8156–8163.
Large, K. P., Ison, A. P., & Williams, D. J. (1998). The effect of agitation rate on lipid utilisation and clavulanic acid production in Streptomyces clavuligerus. Journal of Biotechnology, 63, 111–119.
Gupta, N., Rathi, P., & Gupta, R. (2002). Simplified para-nitrophenyl palmitate assay for lipases and esterases. Analytical Biochemistry, 311, 98–99.
Beisson, F., Tiss, A., Rivière, C., & Verger, R. (2000). Methods for lipase detection and assay: a critical review. European Journal of Lipid Science and Technology, 102, 133–153.
Paula, A. V., Moreira, A. B. R., Braga, L. P., & Castro, H. F. (2008). Comparação do desempenho da lipase de Candida rugosa imobilizada em suporte híbrido de polissiloxano-polivinilálcool empregando diferentes metodologias. Química Nova, 31, 35–40.
Abbas, H., & Comeau, L. (2003). Aroma synthesis by immobilized lipase from Mucor sp. Enzyme and Microbial Technology, 32(5), 589–595.
Soccol, C. R., Pandey, A., & Larroche, C. (2013). Fermentation processes engineering in the food industry. Florida: CRC Press Taylor & Francis Group.
Neto, A. B., Hirata, D. B., Cassiano Filho, L. C. M., Bellão, C., Badino Júnior, A. C., & Hokka, C. O. (2005). A study on clavulanic acid production by Streptomyces clavuligerus in batch, fed-batch and continuous processes. Brazilian Journal of Chemical Engineering, 22(4), 557–563.
Gouveia, E. R., Badino Jr., A. C., Baptista-Neto, A., & Hokka, C. O. (2000). Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus. Brazilian Journal of Chemical Engineering, 17(4–7), 827–834.
Côté, A., & Shareck, F. (2008). Cloning, purification and characterization of two lipases from Streptomyces coelicolor A3 (2). Enzyme and Microbial Technology, 42, 381–388.
Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Heuvel, M., & Misset, O. (1994). Bacterial lipases. Microbiology Reviews, 15, 29–63.
Kasche, V. (1986). Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme and Microbial Technology, 8, 4–16.
Kasche, V., & Kapune, A. (1979). Operational effectiveness factors of immobilized enzyme systems. Enzyme and Microbial Technology, 1, 41–46.
Hari Krishna, S., & Karanth, N. G. (2001). Lipase-catalyzed synthesis of isoamyl butyrate. A kinetic study. Biochimica et Biophysica Acta, 1547, 262–267.
Gandhi, N. N., Sawant, S. B., & Joshi, J. B. (1995). Studies on the lipozyme-catalyzed synthesis of butyl laurate. Biotechnology and Bioengineering, 46(1), 1–12.
Duan, G., Ching, C. B., Lim, E., & Ang, C. H. (1997). Kinetic study of enantioselective esterification of ketoprofen with n-propanol catalysed by an lipase in an organic medium. Biotechnology Letters, 19(11), 1051–1055.
Mendes, A. A., Oliveira, P. C., Vélez, A. M., Giordano, R. C., Giordano, R. L. C., & Castro, H. F. (2012). Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. International Journal of Biological Macromolecules, 50(3), 503–511.
Brady, D., & Jordan, J. (2009). Advances in enzyme immobilisation. Biotechnology Letters, 31, 1639–1650.
Orive, G., Hernández, R. M., Gascón, A. R., & Pedraz, J. L. (2006). Encapsulation of cells in alginate gels. In J. M. Guisan (Ed.), Immobilization of enzymes and cells (2nd ed., pp. 345–355). Totowa, NJ: Humana Press Inc..
Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42, 6223–6235.
Liese, A., & Hilterhaus, L. (2013). Evaluation of immobilized enzymes for industrial applications. Chemical Society Reviews, 42, 6236–6249.
Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353, 2885–2904.
Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.
Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42, 6290–6307.
Acknowledgements
The authors are grateful for the financial support provided by the Brazilian foundations CNPq (grant #142128/2012-0) and CAPES. The authors thank Prof. Alberto Colli Badino Junior (DEQ/UFSCar, São Carlos, Brazil) for the donation of the S. clavuligerus ATCC 27064 strain.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
dos Santos, J.B.C., da Silva Cruz, R.G. & Tardioli, P.W. Production of Whole-Cell Lipase from Streptomyces clavuligerus in a Bench-Scale Bioreactor and Its First Evaluation as Biocatalyst for Synthesis in Organic Medium. Appl Biochem Biotechnol 183, 218–240 (2017). https://doi.org/10.1007/s12010-017-2440-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-017-2440-5


