Skip to main content

Optimization of Cellulase Production by Halobacillus sp. QLS 31 Isolated from Lake Qarun, Egypt


A halophilic cellulase-producing bacterium was isolated from a sediment sample collected from Lake Qarun (Fayoum Province, Egypt). Molecular identification based on 16S rDNA amplification and sequencing revealed 99% homology with Halobacillus sp. and hence was designated as Halobacillus sp. QLS 31. Medium composition and culture conditions were optimized for enhancing the production of cellulase enzyme using the Plackett-Burman statistical design. Ten variables were evaluated for their influence on cellulase production. Carboxymethyl cellulose (CMC), zinc sulfate (ZnSO4), and inoculum size were found to exert a significant effect on cellulase productivity by Halobacillus sp. QLS 31. The maximum specific activity of cellulase enzyme was 48.08 U/mg. Following the predicted conditions, a 7.5-fold increase in cellulase specific activity (175.47 U/mg) was achieved compared to the basal medium (23.19 U/mg) under the following optimized conditions: temperature (30 °C), fermentation time (2 days ), pH value (9), CMC concentration (1%), inoculum size (1%), yeast extract concentration (0.1%), ammonium sulfate ((NH3)2SO4) concentration (0.1%), sodium chloride (NaCl) concentration (20%), and metal inducers: ZnSO4 (0.1%) and Ca/Mg ratio (0.01%). Thus, the results of this study provide an important basis for more efficient, cheap industrial cellulase production from halophilic Halobacillus sp. QLS 31.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Acharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: a review. Brazilian Journal of Microbiology., 43, 844–856.

    CAS  Article  Google Scholar 

  2. 2.

    Phitsuwan, P., Laohakunjit, N., Kerdchoechuen, O., Kyu, K. L., & Ratanakhanokchai, K. (2012). Present and potential applications of cellulases in agriculture, biotechnology and bioenergy. Folia Biologica, 58, 163–176.

    Google Scholar 

  3. 3.

    Venkatachalam, S., Sivaprakash, M., Gowdaman, V., & Prabagaran, S. R. (2014). Bioprospecting of cellulase producing extremophilic bacterial isolates from India. British Microbiology Research Journal., 4, 142–154.

    Article  Google Scholar 

  4. 4.

    Sethi, S., Datta, A., Lal Gupta, B., & Gupta, S. (2013). Optimization of cellulase production from bacteria isolated from soil. ISRN biotechnology., 2013, 1–7.

    Article  Google Scholar 

  5. 5.

    Sadhu, S., & Maiti, T. K. (2013). Cellulase production by bacteria: a review. British Microbiology Research Journal., 3, 235–258.

    CAS  Article  Google Scholar 

  6. 6.

    Immanuel, G., Dhanusha, R., Prema, P., & Palavesam, A. (2006). Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. International journal of environmental science and technology., 3, 25–34.

    CAS  Article  Google Scholar 

  7. 7.

    Ladeira, A., Cruz, E., Delatorre, B., Barbosa, B., & Martins, M. (2015). Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electronic journal of biotechnology., 18, 110–115.

    CAS  Article  Google Scholar 

  8. 8.

    Madern, D., Ebel, C., & Zaccai, G. (2000). Halophilic adaptation of enzymes. Extremophiles, 4, 91–98.

    CAS  Article  Google Scholar 

  9. 9.

    Dassarma, P., Coker, J. A., Huse, V., & Dassarma, S. (2010). Halophiles, industrial application. Encyclopedia of Industrial Biotechnology, 7, 1–10.

    Google Scholar 

  10. 10.

    Delgado-García, M. V., Blanca, A., Cristóbal, N., Contreras-Esquivel, J. C., & Rodríguez-Herrera, R. (2012). Halophilic hydrolases as a new tool for the biotechnological industries. Journal of the Science of Food and Agriculture., 92, 2575–2580.

    Article  Google Scholar 

  11. 11.

    Shivanand, P., Mugeraya, G., & Kumar, A. (2012). Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47. Annals of Microbiology., 63, 1257–1263.

    Article  Google Scholar 

  12. 12.

    Darwish, S. M., El-Bahi, S. M., Sroor, A. T., & Arhoma, N. F. (2013). Natural radioactivity assessment and radiological hazards in soils from Qarun Lake and Wadi El Rayan in Faiyum, Egypt. Open Journal of Soil Science., 3, 289–296.

    Article  Google Scholar 

  13. 13.

    Elbanna, K., Ibrahim, I. M., & Revol-Junelles, A. M. (2015). Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles, 19, 763–774.

    CAS  Article  Google Scholar 

  14. 14.

    Mădălin, E., Roxana, C., Simona, M., Gabriela, P., & Lucia, D. (2009). Extracellular hydrolytic enzymes of halophilic bacteria isolated from a subterranean rock salt crystal. Romanian Biotechnological Letters., 14, 4658–4664.

    Google Scholar 

  15. 15.

    Chand, R., Richa, K. Æ., Dhar, H., Dutt, Æ. S., & Gulati, Æ. A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Current Microbiology., 57, 503–507.

    Article  Google Scholar 

  16. 16.

    Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research., 22, 4673–4680.

    CAS  Article  Google Scholar 

  17. 17.

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution., 28, 2731–2739.

    CAS  Article  Google Scholar 

  18. 18.

    Reddy, C. R. K., Trivedi, N., Gupta, V., Kumar, M., Kumari, P., & Jha, B. (2011). An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydrate Polymers., 83, 891–897.

    Article  Google Scholar 

  19. 19.

    Ghose, T. K. (1987). Measurement of cellulase activities. Pure & Applied chemistry., 59, 257–268.

    CAS  Google Scholar 

  20. 20.

    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry., 254, 248–254.

    Article  Google Scholar 

  21. 21.

    Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical plant. New York: Wiley.

    Book  Google Scholar 

  22. 22.

    Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental technology., 31, 825–834.

    CAS  Article  Google Scholar 

  23. 23.

    Mesbah, N. M., & Wiegel, J. (2011). Halophiles exposed concomitantly to multiple Stressors : adaptive mechanisms of halophilic alkalithermophiles. In E. Roine & H. M. Oksanen (Eds.), Halophiles and hypersaline environments (pp. 249–273). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  24. 24.

    Dalmaso, G., Ferreira, D., & Vermelho, A. (2015). Marine extremophiles: a source of hydrolases for biotechnological applications. Marin Drugs., 13, 1925–1965.

    CAS  Article  Google Scholar 

  25. 25.

    Raddadi, N., Cherif, A., Daffonchio, D., Neifar, M., & Fava, F. (2015). Biotechnological application of extremophiles, extremozymes and extremolytes. Applied Microbiology and Biotechnology., 99, 7907–7913.

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, T., et al. (2011). Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chemistry., 13, 2083–2090.

    CAS  Article  Google Scholar 

  27. 27.

    Cao, G., Zhao, L., Wang, A., Wang, Z., & Ren, N. (2014). Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnology for biofuels., 7, 82–90.

    Article  Google Scholar 

  28. 28.

    Deka, D., Bhargavi, P., Sharma, A., Goyal, D., Jawed, M., & Goyal, A. (2011). Enhancement of cellulase activity from a new strain of Bacillus subtilis by medium optimization and analysis with various cellulosic substrates. Enzyme research., 2011, 1–8.

    Article  Google Scholar 

  29. 29.

    Annamalai, N., & Veeramuthu, M. (2014). Enzymatic saccharification of pretreated rice straw by cellulase produced from Bacillus carboniphilus CAS 3 utilizing lignocellulosic wastes through statistical optimization. Biomass and Bioenergy, 68, 151–160.

    CAS  Article  Google Scholar 

  30. 30.

    Shanmughapriya, S., Kiran, G. S., Selvin, J., Thomas, T. A., & Rani, C. (2010). Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Applied Biochemistry and Biotechnology., 162, 625–640.

    CAS  Article  Google Scholar 

  31. 31.

    Vasudeo, Z., & Lew, C. (2011). Optimization of culture conditions for production of cellulase by a thermophilic Bacillus strain. Journal of Chemistry and Chemical Engineering., 5, 521–527.

    CAS  Google Scholar 

  32. 32.

    Asha, B. M., & Sakthivel, N. (2014). Production, purification and characterization of a new cellulase from Bacillus subtilis that exhibit halophilic, alkalophilic and solvent-tolerant properties. Annals of Microbiology., 64, 1839–1848.

    CAS  Article  Google Scholar 

  33. 33.

    Lugani, Y., Singla, R., & Sooch, B. S. (2015). Optimization of cellulase production from newly isolated Bacillus sp. Y3. Journal of Bioprocessing & Biotechniques., 5, 3–8.

    Article  Google Scholar 

  34. 34.

    Kazemi, A., Rasoul-Amini, S., Shahbazi, M., Safari, A., & Ghasemi, Y. (2013). Isolation, identification, and media optimization of high-level cellulase production by Bacillus sp. Bccs a3, in a fermentation system using response surface methodology. Preparative Biochemistry and Biotechnology., 44, 107–118.

    Article  Google Scholar 

  35. 35.

    Das, A., Paul, T., Halder, S. K., Maity, C., Mohapatra, P., Das, K., Pati, B. R., & Mondal, K. C. (2013). Study on regulation of growth and biosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Polish Journal of Microbiology, 62, 31–43.

    CAS  Google Scholar 

  36. 36.

    Shankar, T., & Isaiarasu, L. (2011). Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle-East Journal of Scientific Research., 8, 40–45.

    CAS  Google Scholar 

  37. 37.

    Liang, Y. L., Zhang, Z., Wu, M., Wu, Y., & Feng, J. X. (2014). Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Research International., 2014, 1–13.

    Google Scholar 

  38. 38.

    Shadrin, N. V., Anufriieva, E. V., Goher, M. E., & Ragab, E. (2016). Long-term changes of physicochemical parameters and benthos in Lake Qarun (Egypt): can we make a correct forecast of ecosystem future ? Knowledge and Management of Aquatic Ecosystems., 417, 1–18.

    Google Scholar 

  39. 39.

    Singh, J., & Kaur, P. (2012). Optimization of process parameters for cellulase production from Bacillus sp . JS14 in solid substrate fermentation using response surface methodology. Brazilian Archives of Biology and Technology., 55, 505–512.

    Article  Google Scholar 

  40. 40.

    Gaur, R., & Tiwari, S. (2015). Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC biotechnology., 15, 19–41.

    Article  Google Scholar 

  41. 41.

    Goyal, V., Mittal, A., Bhuwal, A. K., Singh, G., Yadav, A., & Aggarwal, N. K. (2014). Parametric optimization of cultural conditions for carboxymethyl cellulase production using pretreated rice straw by Bacillus sp. 313SI under stationary and shaking conditions. Biotechnology Research International., 2014, 1–7.

    Article  Google Scholar 

  42. 42.

    Das, A., Bhattacharya, S., & Murali, L. (2010). Production of cellulase from thermophilic Bacillus sp. isolated from cow dung. American-Eurasian Journal of Agricultural and Environmental Sciences, 8, 685–691.

    CAS  Google Scholar 

  43. 43.

    Wang, C., Hsieh, Y., Ng, C., Chan, H., Lin, H., Tzeng, W., & Shyu, Y. (2009). Enzyme and microbial technology purification and characterization of a novel halostable cellulase from Salinivibrio. Enzyme and Microbial Technology., 44, 373–379.

    CAS  Article  Google Scholar 

  44. 44.

    Li, X., Wang, H. L., Li, T., & Yu, H. Y. (2012). Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnology Letters., 34, 1531–1536.

    CAS  Article  Google Scholar 

  45. 45.

    Li, X., & Yu, H. Y. (2012). Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. Journal of Industrial Microbiology and Biotechnology., 39, 117–1124.

    CAS  Google Scholar 

  46. 46.

    Balasubramanian, N., & Simões, N. (2014). Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. International Journal of Biological Macromolecules., 67, 132–139.

    CAS  Article  Google Scholar 

  47. 47.

    Singh, K., Richa, K., Bose, H., Karthik, L., Kumar, G., Bhaskara, R., & Kokati, V. (2014). Statistical media optimization and cellulase production from marine Bacillus VITRKHB. 3 Biotech, 4, 591–598.

    Article  Google Scholar 

  48. 48.

    Assareh, R., Shahbani, Z. H., Akbari, N. K., Aminzadeh, S., & Bakhshi, K. G. (2012). Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws. Bioresource Technology., 120, 99–105.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Amal E. Ali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korany, A.H., Ali, A.E., Essam, T.M. et al. Optimization of Cellulase Production by Halobacillus sp. QLS 31 Isolated from Lake Qarun, Egypt. Appl Biochem Biotechnol 183, 189–199 (2017).

Download citation


  • Halophilic
  • Cellulase
  • Halobacillus, Lake Qarun
  • Plackett-Burman design