Applied Biochemistry and Biotechnology

, Volume 182, Issue 4, pp 1630–1641 | Cite as

Enhancing Menaquinone-7 Production by Bacillus natto R127 Through the Nutritional Factors and Surfactant

  • Xue-chao Hu
  • Wei-ming Liu
  • Miao-miao Luo
  • Lu-jing RenEmail author
  • Xiao-jun Ji
  • He HuangEmail author


Bacillus natto is commonly used in industrial production of menaquinone-7, an important vitamin which plays a crucial role for blood clotting and may contribute to prevention of cardiovascular disease and osteoporosis. This study determined the optimal combination of key nutrients and established an effective use of surfactant in a coupling medium to enhance the yield of extracellular MK-7. MK-7 yield of 31.18 mg/L was achieved under optimal conditions containing 53.6 g/L glycerol, 100 g/L soy peptone, and 10 g/L K2HPO4. A maximal yield of 40.96 mg/L MK-7 and a secretion ratio of 61.1% were obtained when 20 g/L soybean oil was supplemented at the logarithmic phase. The non-ionic surfactant span 20 was the second most promising surfactant in improving product yield, whereas addition of 2 g/L betaine exerted a minimal effect on secretion ratio of MK-7 at 19.1%. The results collectively showed that the supplementation of surfactants was an effective strategy to regulate cytomembrane permeability.

Graphical abstract


Bacillus natto Menaquinone-7 Optimization Surfactant Secretion ratio 


Compliance with Ethical Standards


This work was financially supported by the National Science Foundation for Distinguished Young Scholars of China (No. 21225626), the National Natural Science Foundation of China (No. 21306085 and No. 21476111), Jiangsu Province Outstanding Youth Fund (BK20160092), the National High Technology Research and Development Program of China (No.2014AA021701), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133221120008), and the selected project of Nanjing Tech University (No. ZKRC201510).


  1. 1.
    Walther, B., Karl, J. P., Booth, S. L., & Boyaval, P. (2013). Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Advances in Nutrition, 4, 463–473.CrossRefGoogle Scholar
  2. 2.
    Miyake, N., Hoshi, K., Sano, Y., Kikuchi, K., Tadano, K., & Koshihara, Y. (2001). 1,25-Dihydroxyvitamin D-3 promotes vitamin K-2 metabolism in human osteoblasts. Osteoporosis International, 12, 680–687.CrossRefGoogle Scholar
  3. 3.
    Shea, M. K., & Holden, R. M. (2012). Vitamin K status, vascular calcification: evidence from observational and clinical studies. Advances in Nutrition, 3, 158–165.CrossRefGoogle Scholar
  4. 4.
    Gast, G. C. M., de Roos, N. M., Sluijs, I., Bots, M. L., Beulens, J. W. J., Geleijnse, J. M., Witteman, J. C., Grobbee, D. E., Peeters, P. H. M., & van der Schouw, Y. T. (2009). A high menaquinone intake reduces the incidence of coronary heart disease. Nutrition Metabolism and Cardiovascular Diseases, 19, 504–510.CrossRefGoogle Scholar
  5. 5.
    Vos, M., Esposito, G., Edirisinghe, J. N., Vilain, S., Haddad, D. M., Slabbaert, J. R., Meensel, S. V., Schaap, O., Strooper, B. D., Meganathan, R., Morais, V. A., & Verstreken, P. (2012). Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science, 336, 1306–1310.CrossRefGoogle Scholar
  6. 6.
    Sietske, A., & Diderichsen, B. (1991). On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Applied Microbiology and Biotechnology, 36, 1–4.CrossRefGoogle Scholar
  7. 7.
    Cai, C. G., & Zheng, X. D. (2009). Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. Journal of Industrial Microbiology & Biotechnology, 36, 875–883.CrossRefGoogle Scholar
  8. 8.
    Sandhu, S. K., Oberoi, H. S., Babbar, N., Miglani, K., Chadha, B. S., & Nanda, D. K. (2013). Two-stage statistical medium optimization for augmented cellulase production via solid-state fermentation by newly isolated Aspergillus niger HN-1 and application of crude cellulase consortium in hydrolysis of rice straw. Journal of Agricultural and Food Chemistry, 61, 12653–12661.CrossRefGoogle Scholar
  9. 9.
    Pan, X. J., Kadla, J. F., Ehara, K., Gilkes, N., & Saddler, J. N. (2006). Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry, 54, 5806–5813.CrossRefGoogle Scholar
  10. 10.
    Ikeda, H., & Doi, Y. (1990). A vitamin-K2-binding factor secreted from Bacillus subtilis. European Journal of Biochemistry, 192, 219–224.CrossRefGoogle Scholar
  11. 11.
    Kurosu, M., & Begari, E. (2010). Vitamin K-2 in electron transport system: are enzymes involved in vitamin K-2 biosynthesis promising drug targets? Molecules, 15, 1531–1553.CrossRefGoogle Scholar
  12. 12.
    Zhang, J., Wang, Y. L., Lu, L. P., Zhang, B. B., & Xu, G. R. (2014). Enhanced production of monacolin K by addition of precursors and surfactants in submerged fermentation of Monascus Purpureus 9901. Biotechnology and Applied Biochemistry, 61, 202–207.CrossRefGoogle Scholar
  13. 13.
    Choudhari, S. M., Ananthanarayan, L., & Singhal, R. S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technology, 99, 3166–3173.CrossRefGoogle Scholar
  14. 14.
    Zhong, W. H., Fang, J. J., Liu, H. G., & Wang, X. (2009). Enhanced production of CoQ10 by newly isolated Sphingomonas sp. ZUTEO3 with a coupled fermentation–extraction process. Journal of Industrial Microbiology & Biotechnology, 36, 687–693.CrossRefGoogle Scholar
  15. 15.
    Berenjian, A., Mahanama, R., Talbot, A., Regtop, H., Kavanagh, J., & Dehghani, F. (2014). Designing of an intensification process for biosynthesis and recovery of menaquinone-7. Applied Microbiology and Biotechnology, 172, 1347–1357.Google Scholar
  16. 16.
    Berenjian, A., Mahanama, R., Talbot, A., Biffin, R., Regtop, H., Valtchev, P., Kavanagh, J., & Dehghani, F. (2011). Efficient media for high menaquinone-7 production: response surface methodology approach. New Biotechnology, 28, 665–672.CrossRefGoogle Scholar
  17. 17.
    Kamao, M., Suhara, Y., Tsugawa, N., & Okano, T. (2005). Determination of plasma vitamin K by high-performance liquid chromatography with fluorescence detection using vitamin K analogs as internal standards. Journal of Chromatography B, 816, 41–48.CrossRefGoogle Scholar
  18. 18.
    Holms, H. (1996). Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiology Reviews, 19, 85–116.CrossRefGoogle Scholar
  19. 19.
    Smith, A. D., & Holtzapple, M. T. (2011). Investigation of the optimal carbon-nitrogen ratio and carbohydrate-nutrient blend for mixed-acid batch fermentations. Bioresource Technology, 102, 5976–5987.CrossRefGoogle Scholar
  20. 20.
    D'Huys, P. J., Lule, I., Vercammen, D., Anne, J., Van Impe, J. F., & Bernaerts, K. (2012). Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium. Journal of Biotechnology, 161, 1–13.CrossRefGoogle Scholar
  21. 21.
    Li, Y. H., Liu, B., Zhao, Z. B., & Bai, F. W. (2006). Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese Journal of Biotechnology, 22, 650–656.CrossRefGoogle Scholar
  22. 22.
    Rols, J. L., & Goma, G. (1991). Enhanced oxygen-transfer rates in fermentation using soybean oil-in-water dispersions. Biotechnology Letters, 13, 7–12.CrossRefGoogle Scholar
  23. 23.
    Yang, F. C., Ke, Y. F., & Kuo, S. S. (2000). Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures. Enzyme and Microbial Technology, 27, 295–301.CrossRefGoogle Scholar
  24. 24.
    Eisner, M. D., Jeelani, S. A. K., & Windhab, E. J. (2007). Stability of foams containing proteins, fat particles and nonionic surfactants. Chemical Engineering Science, 62, 1974–1987.CrossRefGoogle Scholar
  25. 25.
    Berenjian, A. (2013). Development of new approaches for liquid state fermentation of menaquinone-7. PhD thesis. University of Sydney, Sydney, Australia.Google Scholar
  26. 26.
    Zhang, Z. B., Zeng, G. M., Shi, J. G., Liu, J., & Yang, W. C. (2006). Effect of tween-80 and rhamnolipid on the production of protease from Pseudomonas Aeruginosa and Bacillus Subtilis. Acta Scientiae Circumstantiae, 26, 1152–1158.Google Scholar
  27. 27.
    Zhang, B. B., & Cheung, P. C. K. (2011). A mechanistic study of the enhancing effect of tween 80 on the mycelial growth and exopolysaccharide production by Pleurotus tuber-regium. Bioresource Technology, 102, 8323–8326.CrossRefGoogle Scholar
  28. 28.
    Langsrud, S., Sundheim, G., & Holck, A. L. (2004). Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. Journal of Applied Microbiology, 96, 201–208.CrossRefGoogle Scholar
  29. 29.
    Hoffmann, T., Wensing, A., Brosius, M., Steil, L., Volker, U., & Bremer, E. (2013). Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. Journal of Bacteriology, 195, 510–522.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of PharmacyNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Bioengineering Institute, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations